Transcranial Shear-Mode Ultrasound: Assessment of Imaging Performance and Excitation Techniques
Transcranial ultrasound imaging is limited by poor acoustic windows and skull induced distortions to the beam. Shear waves in the skull have a better impedance match with longitudinal waves in water and thereby produce a more coherent focus inside the skull. This study presents work on an imaging te...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 28; no. 5; pp. 763 - 774 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Transcranial ultrasound imaging is limited by poor acoustic windows and skull induced distortions to the beam. Shear waves in the skull have a better impedance match with longitudinal waves in water and thereby produce a more coherent focus inside the skull. This study presents work on an imaging technique that utilizes shear-wave propagation through the skull. The pulse-echo lateral distortion introduced by the skull was analyzed by imaging a point scatterer behind ex vivo human craniums at 1 MHz. Brightness images of the target obtained with either shear-mode or conventional longitudinal-mode transmission in the bone were assessed to quantify lateral resolution. As compared to longitudinal-mode transmission, it was found that the use of shear-mode resulted in improved localization along the propagation (depth) axis at the expense of degraded lateral resolution. The signal-to-noise ratio (SNR) limitations introduced by severe attenuation of shear-waves in the skull were overcome with frequency modulated (FM) coded excitations. This gain in SNR was exchanged with resolution and used for compensation of frequency-dependent attenuation in the skull, resulting in a greater than 20% improvement in lateral resolution for both modes of transcranial transmission. The results are an important step towards enhancing the quality of transcranial sonography. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2008.2012017 |