Multiplatform metabolomics for an integrative exploration of metabolic syndrome in older men
Metabolic syndrome (MetS), a cluster of factors associated with risks of developing cardiovascular diseases, is a public health concern because of its growing prevalence. Considering the combination of concomitant components, their development and severity, MetS phenotypes are largely heterogeneous,...
Saved in:
Published in | EBioMedicine Vol. 69; p. 103440 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Metabolic syndrome (MetS), a cluster of factors associated with risks of developing cardiovascular diseases, is a public health concern because of its growing prevalence. Considering the combination of concomitant components, their development and severity, MetS phenotypes are largely heterogeneous, inducing disparity in diagnosis.
A case/control study was designed within the NuAge longitudinal cohort on aging. From a 3-year follow-up of 123 stable individuals, we present a deep phenotyping approach based on a multiplatform metabolomics and lipidomics untargeted strategy to better characterize metabolic perturbations in MetS and define a comprehensive MetS signature stable over time in older men.
We characterize significant changes associated with MetS, involving modulations of 476 metabolites and lipids, and representing 16% of the detected serum metabolome/lipidome. These results revealed a systemic alteration of metabolism, involving various metabolic pathways (urea cycle, amino-acid, sphingo- and glycerophospholipid, and sugar metabolisms…) not only intrinsically interrelated, but also reflecting environmental factors (nutrition, microbiota, physical activity…).
These findings allowed identifying a comprehensive MetS signature, reduced to 26 metabolites for future translation into clinical applications for better diagnosing MetS.
The NuAge Study was supported by a research grant from the Canadian Institutes of Health Research (CIHR; MOP-62842). The actual NuAge Database and Biobank, containing data and biologic samples of 1,753 NuAge participants (from the initial 1,793 participants), are supported by the Fonds de recherche du Québec (FRQ; 2020-VICO-279753), the Quebec Network for Research on Aging, a thematic network funded by the Fonds de Recherche du Québec - Santé (FRQS) and by the Merck-Frost Chair funded by La Fondation de l'Université de Sherbrooke. All metabolomics and lipidomics analyses were funded and performed within the metaboHUB French infrastructure (ANR-INBS-0010).
All authors had full access to the full data in the study and accept responsibility to submit for publication. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2352-3964 2352-3964 |
DOI: | 10.1016/j.ebiom.2021.103440 |