Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects

Ketamine’s mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over tri...

Full description

Saved in:
Bibliographic Details
Published inMolecular psychiatry Vol. 24; no. 7; pp. 1040 - 1052
Main Authors Nugent, Allison C., Ballard, Elizabeth D., Gould, Todd D., Park, Lawrence T., Moaddel, Ruin, Brutsche, Nancy E., Zarate, Carlos A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ketamine’s mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over trial of 0.5 mg/kg ketamine. MDD subjects showed significant improvements in depressive symptoms, and healthy control subjects exhibited modest but significant increases in depressive symptoms for up to 1 day after ketamine administration. Both groups showed increased resting gamma power following ketamine. In MDD subjects, gamma power was not associated with the magnitude of the antidepressant effect. However, baseline gamma power was found to moderate the relationship between post-ketamine gamma power and antidepressant response; specifically, higher post-ketamine gamma power was associated with better response in MDD subjects with lower baseline gamma, with an inverted relationship in MDD subjects with higher baseline gamma. This relationship was observed in multiple regions involved in networks hypothesized to be involved in the pathophysiology of MDD. This finding suggests biological subtypes based on the direction of homeostatic dysregulation and has important implications for inferring ketamine’s mechanism of action from studies of healthy controls alone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1359-4184
1476-5578
1476-5578
DOI:10.1038/s41380-018-0028-2