The long non-coding RNA TUG1-miR-9a-5p axis contributes to ischemic injuries by promoting cardiomyocyte apoptosis via targeting KLF5
Non-coding RNAs participate in many cardiac pathophysiological processes, including myocardial infarction (MI). Here we showed the interplay between long non-coding RNA taurine-upregulated gene 1 (lncR-TUG1), miR-9a-5p (miR-9) and Krüppel-like factor 5 (KLF5). LncR-TUG1 was upregulated in ischemic h...
Saved in:
Published in | Cell death & disease Vol. 10; no. 12; p. 908 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Non-coding RNAs participate in many cardiac pathophysiological processes, including myocardial infarction (MI). Here we showed the interplay between long non-coding RNA taurine-upregulated gene 1 (lncR-TUG1), miR-9a-5p (miR-9) and Krüppel-like factor 5 (KLF5). LncR-TUG1 was upregulated in ischemic heart and in cultured cardiomyocytes exposed to H
2
O
2
. Knockdown of lncR-TUG1 markedly ameliorated impaired cardiac function of MI mice. Further study showed that lncR-TUG1 acted as a competitive endogenous RNA of miR-9, and silencing of lncR-TUG1 inhibited cardiomyocyte apoptosis by upregulating miR-9 expression. Furthermore, the miR-9 overexpression obviously prevented ischemia injury and significantly inhibited H
2
O
2
-induced cardiomyocyte apoptosis via inhibition of mitochondrial apoptotic pathway. KLF5, as a target gene of miR-9 by dual-luciferase reporter assay, was involved in the process of miR-9 in regulating cardiomyocyte apoptosis. Our data identified the KLF5 was downregulated by miR-9 overexpression and knockdown of KLF5 inhibited cardiomyocyte apoptosis induced by H
2
O
2
. MiR-9 exerts anti-cardiomyocyte apoptotic affects by targeting KLF5. Collectively, our data identify a novel function of lncR-TUG1/miR-9/KLF5 axis in regulating cardiomyocyte apoptosis that affects myocardial infarction progression. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/s41419-019-2138-4 |