B1-based SAR reconstruction using contrast source inversion–electric properties tomography (CSI-EPT)

Specific absorption rate (SAR) assessment is essential for safety purposes during MR acquisition. Online SAR assessment is not trivial and requires, in addition, knowledge of the electric tissue properties and the electric fields in the human anatomy. In this study, the potential of the recently dev...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 55; no. 2; pp. 225 - 233
Main Authors Balidemaj, Edmond, van den Berg, Cornelis A. T., van Lier, Astrid L. H. M. W., Nederveen, Aart J., Stalpers, Lukas J. A., Crezee, Hans, Remis, Rob F.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Specific absorption rate (SAR) assessment is essential for safety purposes during MR acquisition. Online SAR assessment is not trivial and requires, in addition, knowledge of the electric tissue properties and the electric fields in the human anatomy. In this study, the potential of the recently developed CSI-EPT method to reconstruct SAR distributions is investigated. This method is based on integral representations for the electromagnetic field and attempts to reconstruct the tissue parameters and the electric field strength based on B 1 + field data only. Full three-dimensional FDTD simulations using a female pelvis model are used to validate two-dimensional CSI reconstruction results in the central transverse plane of a 3T body coil. Numerical experiments demonstrate that the reconstructed SAR distributions are in good agreement with the SAR distributions as determined via 3D FDTD simulations and show that these distributions can be computed very efficiently in the central transverse plane of a body coil with the two-dimensional approach of CSI-EPT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-016-1497-6