Real-Time Influence Maximization in a RTB Setting
To maximize the impact of an advertisement campaign on social networks, the real-time bidding (RTB) systems aim at targeting the most influential users of this network. Influence maximization (IM) is a solution that addresses this issue by maximizing the coverage of the network with top-k influencer...
Saved in:
Published in | Data Science and Engineering Vol. 5; no. 3; pp. 224 - 239 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To maximize the impact of an advertisement campaign on social networks, the real-time bidding (RTB) systems aim at targeting the most influential users of this network. Influence maximization (IM) is a solution that addresses this issue by maximizing the coverage of the network with top-k influencers who maximize the diffusion of information. Associated with online advertising strategies at Web scale, RTB is faced with complex ad placement decisions in real time to deal with a high-speed stream of online users. To tackle this issue, IM strategies should be modified in order to integrate RTB constraints. While most traditional IM methods deal with static sets of top influencers, they hardly address the dynamic influence targeting issue by integrating short time decision, no interchange and stream’s incompleteness. This paper proposes a real-time influence maximization approach which takes influence maximization decisions within a real-time bidding environment. A deep analysis of influence scores of users over several social networks is presented as well a strategy to guarantee the impact of an IM strategy in order to define the budget of an ad campaign. Finally, we offer a thorough experimental process to compare static versus dynamic IM solutions
wrt
. influence scores. |
---|---|
ISSN: | 2364-1185 2364-1541 |
DOI: | 10.1007/s41019-020-00132-2 |