Driver Stress Detection Using Ultra-Short-Term HRV Analysis under Real World Driving Conditions

Considering that driving stress is a major contributor to traffic accidents, detecting drivers' stress levels in time is helpful for ensuring driving safety. This paper attempts to investigate the ability of ultra-short-term (30-s, 1-min, 2-min, and 3-min) HRV analysis for driver stress detecti...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 25; no. 2; p. 194
Main Authors Liu, Kun, Jiao, Yubo, Du, Congcong, Zhang, Xiaoming, Chen, Xiaoyu, Xu, Fang, Jiang, Chaozhe
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Considering that driving stress is a major contributor to traffic accidents, detecting drivers' stress levels in time is helpful for ensuring driving safety. This paper attempts to investigate the ability of ultra-short-term (30-s, 1-min, 2-min, and 3-min) HRV analysis for driver stress detection under real driving circumstances. Specifically, the -test was used to investigate whether there were significant differences in HRV features under different stress levels. Ultra-short-term HRV features were compared with the corresponding short-term (5-min) features during low-stress and high-stress phases by the Spearman rank correlation and Bland-Altman plots analysis. Furthermore, four different machine-learning classifiers, including a support vector machine (SVM), random forests (RFs), K-nearest neighbor (KNN), and Adaboost, were evaluated for stress detection. The results show that the HRV features extracted from ultra-short-term epochs were able to detect binary drivers' stress levels accurately. In particular, although the capability of HRV features in detecting driver stress also varied between different ultra-short-term epochs, MeanNN, SDNN, NN20, and MeanHR were selected as valid surrogates of short-term features for driver stress detection across the different epochs. For drivers' stress levels classification, the best performance was achieved with the SVM classifier, with an accuracy of 85.3% using 3-min HRV features. This study makes a contribution to building a robust and effective stress detection system using ultra-short-term HRV features under actual driving environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e25020194