Diverse hydrogen production and consumption pathways influence methane production in ruminants

Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H 2 ), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used compa...

Full description

Saved in:
Bibliographic Details
Published inThe ISME Journal Vol. 13; no. 10; pp. 2617 - 2632
Main Authors Greening, Chris, Geier, Renae, Wang, Cecilia, Woods, Laura C., Morales, Sergio E., McDonald, Michael J., Rushton-Green, Rowena, Morgan, Xochitl C., Koike, Satoshi, Leahy, Sinead C., Kelly, William J., Cann, Isaac, Attwood, Graeme T., Cook, Gregory M., Mackie, Roderick I.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H 2 ), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used comparative genomic, metatranscriptomic and co-culture-based approaches to gain a system-wide understanding of the organisms and pathways responsible for ruminal H 2 metabolism. Two-thirds of sequenced rumen bacterial and archaeal genomes encode enzymes that catalyse H 2 production or consumption, including 26 distinct hydrogenase subgroups. Metatranscriptomic analysis confirmed that these hydrogenases are differentially expressed in sheep rumen. Electron-bifurcating [FeFe]-hydrogenases from carbohydrate-fermenting Clostridia (e.g., Ruminococcus ) accounted for half of all hydrogenase transcripts. Various H 2 uptake pathways were also expressed, including methanogenesis ( Methanobrevibacter ), fumarate and nitrite reduction ( Selenomonas ), and acetogenesis ( Blautia ). Whereas methanogenesis-related transcripts predominated in high methane yield sheep, alternative uptake pathways were significantly upregulated in low methane yield sheep. Complementing these findings, we observed significant differential expression and activity of the hydrogenases of the hydrogenogenic cellulose fermenter Ruminococcus albus and the hydrogenotrophic fumarate reducer Wolinella succinogenes in co-culture compared with pure culture. We conclude that H 2 metabolism is a more complex and widespread trait among rumen microorganisms than previously recognised. There is evidence that alternative hydrogenotrophs, including acetogenic and respiratory bacteria, can prosper in the rumen and effectively compete with methanogens for H 2 . These findings may help to inform ongoing strategies to mitigate methane emissions by increasing flux through alternative H 2 uptake pathways, including through animal selection, dietary supplementation and methanogenesis inhibitors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-7362
1751-7370
DOI:10.1038/s41396-019-0464-2