On rational bounds for the gamma function

In the article, we prove that the double inequality x 2 + p 0 x + p 0 < Γ ( x + 1 ) < x 2 + 9 / 5 x + 9 / 5 holds for all x ∈ ( 0 , 1 ) , we present the best possible constants λ and μ such that λ ( x 2 + 9 / 5 ) x + 9 / 5 ≤ Γ ( x + 1 ) ≤ μ ( x 2 + p 0 ) x + p 0 for all x ∈ ( 0 , 1 ) , and we...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2017; no. 1; pp. 210 - 17
Main Authors Yang, Zhen-Hang, Qian, Wei-Mao, Chu, Yu-Ming, Zhang, Wen
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-242X
1025-5834
1029-242X
DOI10.1186/s13660-017-1484-y

Cover

Loading…
More Information
Summary:In the article, we prove that the double inequality x 2 + p 0 x + p 0 < Γ ( x + 1 ) < x 2 + 9 / 5 x + 9 / 5 holds for all x ∈ ( 0 , 1 ) , we present the best possible constants λ and μ such that λ ( x 2 + 9 / 5 ) x + 9 / 5 ≤ Γ ( x + 1 ) ≤ μ ( x 2 + p 0 ) x + p 0 for all x ∈ ( 0 , 1 ) , and we find the value of x ∗ in the interval ( 0 , 1 ) such that Γ ( x + 1 ) > ( x 2 + 1 / γ ) / ( x + 1 / γ ) for x ∈ ( 0 , x ∗ ) and Γ ( x + 1 ) < ( x 2 + 1 / γ ) / ( x + 1 / γ ) for x ∈ ( x ∗ , 1 ) , where Γ ( x ) is the classical gamma function, γ = lim n → ∞ ( ∑ k = 1 n 1 / k − log n ) = 0.577 … is Euler-Mascheroni constant and p 0 = γ / ( 1 − γ ) = 1.365 …  .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-017-1484-y