On rational bounds for the gamma function
In the article, we prove that the double inequality x 2 + p 0 x + p 0 < Γ ( x + 1 ) < x 2 + 9 / 5 x + 9 / 5 holds for all x ∈ ( 0 , 1 ) , we present the best possible constants λ and μ such that λ ( x 2 + 9 / 5 ) x + 9 / 5 ≤ Γ ( x + 1 ) ≤ μ ( x 2 + p 0 ) x + p 0 for all x ∈ ( 0 , 1 ) , and we...
Saved in:
Published in | Journal of inequalities and applications Vol. 2017; no. 1; pp. 210 - 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
2017
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-242X 1025-5834 1029-242X |
DOI | 10.1186/s13660-017-1484-y |
Cover
Loading…
Summary: | In the article, we prove that the double inequality
x
2
+
p
0
x
+
p
0
<
Γ
(
x
+
1
)
<
x
2
+
9
/
5
x
+
9
/
5
holds for all
x
∈
(
0
,
1
)
, we present the best possible constants
λ
and
μ
such that
λ
(
x
2
+
9
/
5
)
x
+
9
/
5
≤
Γ
(
x
+
1
)
≤
μ
(
x
2
+
p
0
)
x
+
p
0
for all
x
∈
(
0
,
1
)
, and we find the value of
x
∗
in the interval
(
0
,
1
)
such that
Γ
(
x
+
1
)
>
(
x
2
+
1
/
γ
)
/
(
x
+
1
/
γ
)
for
x
∈
(
0
,
x
∗
)
and
Γ
(
x
+
1
)
<
(
x
2
+
1
/
γ
)
/
(
x
+
1
/
γ
)
for
x
∈
(
x
∗
,
1
)
, where
Γ
(
x
)
is the classical gamma function,
γ
=
lim
n
→
∞
(
∑
k
=
1
n
1
/
k
−
log
n
)
=
0.577
…
is Euler-Mascheroni constant and
p
0
=
γ
/
(
1
−
γ
)
=
1.365
…
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-017-1484-y |