Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis

An influential hypothesis from the last decade proposed that regions within the right inferior frontal cortex of the human brain were dedicated to supporting response inhibition. There is growing evidence, however, to support an alternative model, which proposes that neural areas associated with spe...

Full description

Saved in:
Bibliographic Details
Published inBrain Structure and Function Vol. 222; no. 9; pp. 3973 - 3990
Main Authors Zhang, Ruibin, Geng, Xiujuan, Lee, Tatia M. C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An influential hypothesis from the last decade proposed that regions within the right inferior frontal cortex of the human brain were dedicated to supporting response inhibition. There is growing evidence, however, to support an alternative model, which proposes that neural areas associated with specific inhibitory control tasks co-exist as common network mechanisms, supporting diverse cognitive processes. This meta-analysis of 225 studies comprising 323 experiments examined the common and distinct neural correlates of cognitive processes for response inhibition, namely interference resolution, action withholding, and action cancellation. Activation coordinates for each subcategory were extracted using multilevel kernel density analysis (MKDA). The extracted activity patterns were then mapped onto the brain functional network atlas to derive the common (i.e., process-general) and distinct (i.e., domain-oriented) neural network correlates of these processes. Independent of the task types, activation of the right hemispheric regions (inferior frontal gyrus, insula, median cingulate, and paracingulate gyri) and superior parietal gyrus was common across the cognitive processes studied. Mapping the activation patterns to a brain functional network atlas revealed that the fronto-parietal and ventral attention networks were the core neural systems that were commonly engaged in different processes of response inhibition. Subtraction analyses elucidated the distinct neural substrates of interference resolution, action withholding, and action cancellation, revealing stronger activation in the ventral attention network for interference resolution than action inhibition. On the other hand, action withholding/cancellation primarily engaged the fronto-striatal circuit. Overall, our results suggest that response inhibition is a multidimensional cognitive process involving multiple neural regions and networks for coordinating optimal performance. This finding has significant implications for the understanding and assessment of response inhibition.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1863-2653
1863-2661
1863-2661
0340-2061
DOI:10.1007/s00429-017-1443-x