Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans

Our most recent fossil relatives, the Neanderthals, had a large brain and a very heavy body compared to modern humans. This type of body requires high levels of energetic intake. While food (meat and fat consumption) is a source of energy, oxygen via respiration is also necessary for metabolism. We...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 1; no. 1; p. 117
Main Authors García-Martínez, Daniel, Torres-Tamayo, Nicole, Torres-Sánchez, Isabel, García-Río, Francisco, Rosas, Antonio, Bastir, Markus
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.08.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Our most recent fossil relatives, the Neanderthals, had a large brain and a very heavy body compared to modern humans. This type of body requires high levels of energetic intake. While food (meat and fat consumption) is a source of energy, oxygen via respiration is also necessary for metabolism. We would therefore expect Neanderthals to have large respiratory capacities. Here we estimate the pulmonary capacities of Neanderthals, based on costal measurements and physiological data from a modern human comparative sample. The Kebara 2 male had a lung volume of about 9.04 l; Tabun C1, a female individual, a lung volume of 5.85 l; and a Neanderthal from the El Sidrón site, a lung volume of 9.03 l. These volumes are approximately 20% greater than the corresponding volumes of modern humans of the same body size and sex. These results show that the Neanderthal body was highly sensitive to energy supply. Daniel García-Martínez et al. report Neanderthal lung volume estimates based on measurements from rib bone fossils and lung capacity data from modern humans. They estimate that Neanderthal individuals had approximately 20% higher lung capacity than modern humans, possibly due to higher energy requirements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-018-0125-4