Deciphering the cellular pathway for transport of poly(A)-binding protein II

Poly(A)-binding protein II (PABP2) is an abundant nuclear protein that binds with high affinity to nascent poly(A) tails, stimulating their extension and controlling their length. In the cytoplasm, a distinct protein (PABP1) binds to poly(A) tails and participates in mRNA translation and stability....

Full description

Saved in:
Bibliographic Details
Published inRNA (Cambridge) Vol. 6; no. 2; pp. 245 - 256
Main Authors CALADO, ANGELO, KUTAY, ULRIKE, KÜHN, UWE, WAHLE, ELMAR, CARMO-FONSECA, MARIA
Format Journal Article
LanguageEnglish
Published United States Cambridge University Press 01.02.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Poly(A)-binding protein II (PABP2) is an abundant nuclear protein that binds with high affinity to nascent poly(A) tails, stimulating their extension and controlling their length. In the cytoplasm, a distinct protein (PABP1) binds to poly(A) tails and participates in mRNA translation and stability. How cytoplasmic PABP1 substitutes for nuclear PABP2 is still unknown. Here we report that PABP2 shuttles back and forth between nucleus and cytoplasm by a carrier-mediated mechanism. A potential novel type of nuclear localization signal exists at the C-terminus of the protein, a domain that is highly enriched in methylated arginines. PABP2 binds directly to transportin in a RanGTP-sensitive manner, suggesting an involvement of this transport receptor in mediating import of the protein into the nucleus. Although PABP2 is small enough to diffuse passively through the nuclear pores, protein fusion experiments reveal the existence of a facilitated export pathway. Accordingly, no transport of PABP2 to the cytoplasm occurs at 4 °C. In contrast, export of PABP2 continues in the absence of transcription, indicating that transport to the cytoplasm is independent of mRNA traffic. Thus, rather than leaving the nucleus as a passive passenger of mRNAs, the data suggest that PABP2 interacts with the nuclear export machinery and may therefore contribute to mRNA transport.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1355-8382
1469-9001
DOI:10.1017/S1355838200991908