A preliminary exploration of acute intracranial pressure-cerebrospinal fluid production relationships in experimental hydrocephalus

CONTEXT: By occluding the fourth ventricle simultaneously obtaining telemetric data on intracranial pressure (ICP) and cerebrospinal fluid (CSF) production, the authors of this study investigate a variety of physiologic parameters in cases of experimental hydrocephalus. AIMS: The aim of this study i...

Full description

Saved in:
Bibliographic Details
Published inBrain circulation Vol. 6; no. 3; pp. 200 - 207
Main Authors Khasawneh, Ahmad, Alexandra, Petroj, Zajciw, Paul, Harris, Carolyn
Format Journal Article
LanguageEnglish
Published Mumbai Wolters Kluwer India Pvt. Ltd 01.07.2020
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Wolters Kluwer - Medknow
Wolters Kluwer Medknow Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CONTEXT: By occluding the fourth ventricle simultaneously obtaining telemetric data on intracranial pressure (ICP) and cerebrospinal fluid (CSF) production, the authors of this study investigate a variety of physiologic parameters in cases of experimental hydrocephalus. AIMS: The aim of this study is to provide a new context on the disrupted homeostasis in hydrocephalus and guide toward improved treatment based on multiple physiological parameters. MATERIALS AND METHODS: Hydrocephalus was induced in ten 21-day-old Sprague-Dawley rats by blocking the flow of CSF to the fourth ventricle with kaolin. Ten days post induction, when physical signs of ventriculomegaly reached Evan's ratio (ER) of ≥0.46, CSF flow and ICP were measured while manipulating body position (0°, 45°, 90°) and heart rate. RESULTS: In hydrocephalic animals (ER ≥0.46), we found a near-steady average acute ICP (13.638 ± 2.331) compared to age-matched controls (ER <0.30) (13.068 ± 8.781), whose ICP fluctuated with the position. Hydrocephalic and controls exhibited an insignificant degree of parabolic shifts in CSF production when body position was changed from prone to 90° and again when moved back to the prone position, a trend more noteworthy in controls (P = 0.1322 and 0.2772). A Pearson's Correlation found CSF production and ICP to be correlated at baseline 0° posture (P = 0.05) in the control group, but not the hydrocephalic group. Weight appeared to play a role when animals were held at 90°. No significant changes in ICP or CSF flow patterns were observed when the heart rate was increased within either group. CONCLUSIONS: These preliminary findings suggest that our standard assumptions of posture-dependent changes in ICP created using data from physiologic data may be inaccurate in the hydrocephalic patient, and thus describe a need to further explore these relationships.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2394-8108
2455-4626
2455-4626
DOI:10.4103/bc.bc_42_20