Gravity control of growth form in Brassica rapa and Arabidopsis thaliana (Brassicaceae): Consequences for secondary metabolism

How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earth's environment does not prevail. We used plant gr...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of botany Vol. 96; no. 3; pp. 652 - 660
Main Authors Allen, Joan, Bisbee, Patricia A, Darnell, Rebecca L, Kuang, Anxiu, Levine, Lanfang H, Musgrave, Mary E, van Loon, Jack J.W.A
Format Journal Article
LanguageEnglish
Published United States Botanical Society of America 01.03.2009
Botanical Soc America
Botanical Society of America, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earth's environment does not prevail. We used plant growth hardware from prior experiments on the space shuttle to grow Brassica rapa and Arabidopsis thaliana plants during 16-d or 11-d hypergravity treatments on large-diameter centrifuge rotors. Both species showed radical changes in growth form, becoming more prostrate with increasing g-loads (2-g and 4-g). In Brassica, height decreased and stems thickened in a linear relationship with increasing g-load. Glucosinolates, secondary compounds that contribute flavor to Brassica, decreased by 140% over the range of micro to 4-g, while the structural secondary compound, lignin, remained constant at ~15% (w/w) cell wall dry mass. Stem thickening at 4-g was associated with substantial increases in cell size (47%, 226%, and 33% for pith, cortex, and vascular tissue), rather than any change in cell number. The results, which demonstrate the profound effect of gravity on plant growth form and secondary metabolism, are discussed in the context of similar thigmostresses such as touch and wind.
Bibliography:The authors thank M. Regan, A. Spinale, B. Wells, H. Levine, D. Shultz, and D. Gruendel from Kennedy Space Center, FL; Tom Luzod, T. Shaw, and J. Rask at Ames Research Center, Moffett Field, CA, and R. Wagers‐Hughes and Erica Escobeda from UT Pan American, for supporting the experiments. This project was funded by NASA grants NAG10‐329 and NNX07AT77G to M.E.M. and by NWO‐ALW‐SRON grant MG‐057 to J.v.L.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9122
1537-2197
DOI:10.3732/ajb.0800261