Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster

We have solved the high-resolution crystal structures of the Drosophila melanogaster alcohol-binding protein LUSH in complex with a series of short-chain n-alcohols. LUSH is the first known nonenzyme protein with a defined in vivo alcohol-binding function. The structure of LUSH reveals a set of mole...

Full description

Saved in:
Bibliographic Details
Published inNature structural & molecular biology Vol. 10; no. 9; pp. 694 - 700
Main Authors Jones, David N M, Kruse, Schoen W, Zhao, Rui, Smith, Dean P
Format Journal Article
LanguageEnglish
Published United States Nature Publishing Group 01.09.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have solved the high-resolution crystal structures of the Drosophila melanogaster alcohol-binding protein LUSH in complex with a series of short-chain n-alcohols. LUSH is the first known nonenzyme protein with a defined in vivo alcohol-binding function. The structure of LUSH reveals a set of molecular interactions that define a specific alcohol-binding site. A group of amino acids, Thr57, Ser52 and Thr48, form a network of concerted hydrogen bonds between the protein and the alcohol that provides a structural motif to increase alcohol-binding affinity at this site. This motif seems to be conserved in a number of mammalian ligand-gated ion channels that are directly implicated in the pharmacological effects of alcohol. Further, these sequences are found in regions of ion channels that are known to confer alcohol sensitivity. We suggest that the alcohol-binding site in LUSH represents a general model for alcohol-binding sites in proteins.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1072-8368
1545-9993
2331-365X
1545-9985
DOI:10.1038/nsb960