Super tough poly(lactic acid) blends: a comprehensive review

Poly(lactic acid) or poly(lactide) (PLA) is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications. However, PLA is inherently brittle, with les...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 1; no. 22; pp. 13316 - 13368
Main Authors Zhao, Xipo, Hu, Huan, Wang, Xin, Yu, Xiaolei, Zhou, Weiyi, Peng, Shaoxian
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.04.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Poly(lactic acid) or poly(lactide) (PLA) is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications. However, PLA is inherently brittle, with less than 10% elongation at break and a relatively poor impact strength, which limit its use in some specific areas. Therefore, enhancing the toughness of PLA has been widely explored in academic and industrial fields over the last two decades. This work aims to summarize and organize the current development in super tough PLA fabricated via polymer blending. The miscibility and compatibility of PLA-based blends, and the methods and approaches for compatibilized PLA blends are briefly discussed. Recent advances in PLA modified with various polymers for improving the toughness of PLA are also summarized and elucidated systematically in this review. Various polymers used in toughening PLA are discussed and organized: elastomers, such as petroleum-based traditional polyurethanes (PUs), bio-based elastomers, and biodegradable polyester elastomers; glycidyl ester compatibilizers and their copolymers/elastomers, such as poly(ethylene- co -glycidyl methacrylate) (EGMA), poly(ethylene- n -butylene-acrylate- co -glycidyl methacrylate) (EBA-GMA); rubber; petroleum-based traditional plastics, such as PE and PP; and various biodegradable polymers, such as poly(butylene adipate- co -terephthalate) (PBAT), polycaprolactone (PCL), poly(butylene succinate) (PBS), and natural macromolecules, especially starch. The high tensile toughness and high impact strength of PLA-based blends are briefly outlined, while the super tough PLA-based blends with impact strength exceeding 50 kJ m −2 are elucidated in detail. The toughening strategies and approaches of PLA based super tough blends are summarized and analyzed. The relationship of the properties of PLA-based blends and their morphological parameters, including particle size, interparticle distance, and phase morphologies, are presented. PLA is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2046-2069
2046-2069
DOI:10.1039/d0ra01801e