Characterization of sub-pollen particles in size-resolved atmospheric aerosol using chemical tracers
Pollen grains may contain allergens that exacerbate allergic respiratory diseases like asthma and rhinitis. In the presence of water, pollen grains (10–100 μm) can rupture to produce sub-pollen particles (SPP) with diameters <2.5 μm, which in comparison to intact pollen grains, have longer atmosp...
Saved in:
Published in | Atmospheric Environment: X Vol. 15; p. 100177 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-1621 2590-1621 |
DOI | 10.1016/j.aeaoa.2022.100177 |
Cover
Loading…
Summary: | Pollen grains may contain allergens that exacerbate allergic respiratory diseases like asthma and rhinitis. In the presence of water, pollen grains (10–100 μm) can rupture to produce sub-pollen particles (SPP) with diameters <2.5 μm, which in comparison to intact pollen grains, have longer atmospheric lifetimes and greater penetration to the lower lung. The current study examines SPP, fungal spores, and bacteria in size-resolved atmospheric particulate matter (PM) using chemical and biological tracers. During springtime tree pollen season in Iowa City, Iowa, fine particle (PM2.5) concentrations of fructose (a pollen chemical tracer) increased on rainy sampling periods, especially during severe thunderstorms, and peaked when a tornado struck nearby. Submicron fluorescent particles, measured by single-particle fluorescence spectroscopy, were also enhanced during rain events, particularly thunderstorms in agreement with the chemical tracer measurements. PM2.5 sucrose (a pollen chemical tracer) concentrations were higher in early spring when nighttime temperatures were closer to freezing, while fructose concentrations were higher in late spring with warmer temperatures, consistent with chemical tracers being sensitive to seasonal temperature influences. The first co-located measurements of fructose and Bet v 1 (birch pollen allergen), indicated that SPP ranged in diameter from <0.25 to 2.5 μm during rainy sampling periods and that allergens and carbohydrates exhibited distinct size distributions. Meanwhile, mannitol (a fungal spore tracer) peaked on warm, dry days following rain and was primarily in supermicron particles (>1.0 μm), which is consistent with intact fungal spore diameters (1–30 μm). Bacterial endotoxins in PM also increased during extreme weather events, primarily in supermicron particles. While the concentrations of fructose, mannitol, and endotoxin all increased in PM2.5 μm during thunderstorms, the greatest relative increase in concentration was observed for fructose. Together, these observations suggest that SPP containing starch granules and allergens (Bet v 1) were released during rainy sampling periods. This study advances the use of chemical tracers to track SPP and other bioaerosols in the atmosphere, by providing new insight to their size distribution and response to extreme weather conditions.
•Submicron-sized pollen tracers and allergens increase in concentration during rainy periods.•Bacterial endotoxin have bimodal size distributions and also increase during rainy periods.•Supermicron-sized fungal spores increase after rain and overnight.•Fructose and sucrose are recommended as tracers of sub-pollen particles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2590-1621 2590-1621 |
DOI: | 10.1016/j.aeaoa.2022.100177 |