Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls

Falling is a significant health problem. Fall detection, to alert for medical attention, has been gaining increasing attention. Still, most of the existing studies use falls simulated in a laboratory environment to test the obtained performance. We analyzed the acceleration signals recorded by an in...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 22; p. 6479
Main Authors Palmerini, Luca, Klenk, Jochen, Becker, Clemens, Chiari, Lorenzo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.11.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Falling is a significant health problem. Fall detection, to alert for medical attention, has been gaining increasing attention. Still, most of the existing studies use falls simulated in a laboratory environment to test the obtained performance. We analyzed the acceleration signals recorded by an inertial sensor on the lower back during 143 real-world falls (the most extensive collection to date) from the FARSEEING repository. Such data were obtained from continuous real-world monitoring of subjects with a moderate-to-high risk of falling. We designed and tested fall detection algorithms using features inspired by a multiphase fall model and a machine learning approach. The obtained results suggest that algorithms can learn effectively from features extracted from a multiphase fall model, consistently overperforming more conventional features. The most promising method (support vector machines and features from the multiphase fall model) obtained a sensitivity higher than 80%, a false alarm rate per hour of 0.56, and an F-measure of 64.6%. The reported results and methodologies represent an advancement of knowledge on real-world fall detection and suggest useful metrics for characterizing fall detection systems for real-world use.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20226479