Stationary Computed Tomography for Space and other Resource-constrained Environments

Computed tomography (CT) is used to diagnose many emergent medical conditions, including stroke and traumatic brain injuries. Unfortunately, the size, weight, and expense of CT systems make them largely inaccessible for patients outside of major hospitals. We have designed a module containing multip...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 14195 - 10
Main Authors Cramer, Avilash, Hecla, Jake, Wu, Dufan, Lai, Xiaochun, Boers, Tim, Yang, Kai, Moulton, Tim, Kenyon, Steven, Arzoumanian, Zaven, Krull, Wolfgang, Gendreau, Keith, Gupta, Rajiv
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 21.09.2018
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Computed tomography (CT) is used to diagnose many emergent medical conditions, including stroke and traumatic brain injuries. Unfortunately, the size, weight, and expense of CT systems make them largely inaccessible for patients outside of major hospitals. We have designed a module containing multiple miniature x-ray sources that could allow for CT systems to be significantly lighter, smaller, and cheaper, and to operate without any moving parts. We have developed a novel photocathode-based x-ray source, created by depositing a thin film of magnesium on an electron multiplier. When illuminated by a UV LED, this photocathode emits a beam of electrons, with a beam current of up to 1 mA. The produced electrons are accelerated through a high voltage to a tungsten target. These sources are individually addressable and can be pulsed rapidly, through electronic control of the LEDs. Seven of these sources are housed together in a 17.5 degree arc within a custom vacuum manifold. A full ring of these modules could be used for CT imaging. By pulsing the sources in series, we are able to demonstrate x-ray tomosynthesis without any moving parts. With a clinical flat-panel detector, we demonstrate 3D acquisition and reconstructions of a cadaver swine lung.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-32505-z