The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL overexpressing cells

We demonstrate that PS-341, a small molecule inhibitor of the proteasome, markedly sensitizes resistant prostate, colon, and bladder cancer cells to TNF-like apoptosis-inducing ligand (TRAIL)-induced apoptosis irrespective of Bcl-xL overexpression. PS-341 treatment by itself does not affect the leve...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 22; no. 32; pp. 4953 - 4963
Main Authors JOHNSON, Thomas R, STONE, Kimberley, NIKRAD, Malti, YEH, Tammie, ZONG, Wei-Xing, THOMPSON, Craig B, NESTEROV, Alexandre, KRAFT, Andrew S
Format Journal Article
LanguageEnglish
Published Basingstoke Nature Publishing 07.08.2003
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate that PS-341, a small molecule inhibitor of the proteasome, markedly sensitizes resistant prostate, colon, and bladder cancer cells to TNF-like apoptosis-inducing ligand (TRAIL)-induced apoptosis irrespective of Bcl-xL overexpression. PS-341 treatment by itself does not affect the levels of Bax, Bak, caspases 3 and 8, c-Flip or FADD, but elevates levels of TRAIL receptors DR4 and DR5. This increase in receptor protein levels is associated with the ubiquitination of the DR5 protein. When PS-341 is combined with TRAIL, the levels of activated caspase 8 and cleaved Bid are substantially increased. In Bax-negative TRAIL-resistant HC-4 colon cancer cells, the combination of PS-341 and TRAIL overcomes the block to activation of the mitochondrial pathway and causes SMAC and cytochrome c release followed by apoptosis. Similarly, murine embryonic fibroblasts lacking Bax undergo apoptosis when exposed to the combination of PS-341 and TRAIL; however, fibroblasts lacking Bak are significantly resistant. Taken together, these findings indicate that PS-341 enhances TRAIL-induced apoptosis by increasing the cleavage of caspase 8, causing Bak-dependent release of mitochondrial proapoptotic proteins.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1206656