Ablation of N-acetylglucosaminyltransferases in Caenorhabditis induces expression of unusual intersected and bisected N-glycans
The modification in the Golgi of N-glycans by N-acetylglucosaminyltransferase I (GlcNAc-TI, MGAT1) can be considered to be a hallmark of multicellular eukaryotes as it is found in all metazoans and plants, but rarely in unicellular organisms. The enzyme is key for the normal processing of N-glycans...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 10; pp. 2191 - 2203 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The modification in the Golgi of N-glycans by N-acetylglucosaminyltransferase I (GlcNAc-TI, MGAT1) can be considered to be a hallmark of multicellular eukaryotes as it is found in all metazoans and plants, but rarely in unicellular organisms. The enzyme is key for the normal processing of N-glycans to either complex or paucimannosidic forms, both of which are found in the model nematode Caenorhabditis elegans. Unusually, this organism has three different GlcNAc-TI genes (gly-12, gly-13 and gly-14); therefore, a complete abolition of GlcNAc-TI activity required the generation of a triple knock-out strain. Previously, the compositions of N-glycans from this mutant were described, but no detailed structures. Using an off-line HPLC-MALDI-TOF-MS approach combined with exoglycosidase digestions and MS/MS, we reveal that the multiple hexose residues of the N-glycans of the gly-12;gly-13;gly-14 triple mutant are not just mannose, but include galactoses in three different positions (β-intersecting, β-bisecting and α-terminal) on isomeric forms of Hex4-8HexNAc2 structures; some of these structures are fucosylated and/or methylated. Thus, the N-glycomic repertoire of Caenorhabditis is even wider than expected and exhibits a large degree of plasticity even in the absence of key glycan processing enzymes from the Golgi apparatus.
[Display omitted]
•Deletion of GlcNAc-TI genes in Caenorhabditis leads to a major glycomic shift.•Off-line HPLC-MALDI-TOF MS reveals new N-glycan structures.•Intersecting galactose with or without a fucose substitution is a new glycan motif. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 1872-8006 |
DOI: | 10.1016/j.bbagen.2018.07.002 |