Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis

Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activ...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 23; no. 8; pp. 994 - 1006
Main Authors Wu, Jianfeng, Huang, Zhe, Ren, Junming, Zhang, Zhirong, He, Peng, Li, Yangxin, Ma, Jianhui, Chen, Wanze, Zhang, Yingying, Zhou, Xiaojuan, Yang, Zhentao, Wu, Su-Qin, Chen, Lanfen, Han, Jiahuai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2013
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1001-0602
1748-7838
1748-7838
DOI10.1038/cr.2013.91

Cover

Loading…
Abstract Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
AbstractList Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl -deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl -deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl -deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl -deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1[beta] (IL-1[beta]), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Author Jianfeng Wu Zhe Huang Junming Ren Zhirong Zhang Peng He Yangxin Li Jianhui Ma Wanze Chen Yingying Zhang Xiaojuan Zhou Zhentao Yang Su-Qin Wu Lanfen Chen Jiahuai Han
AuthorAffiliation State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
Author_xml – sequence: 1
  givenname: Jianfeng
  surname: Wu
  fullname: Wu, Jianfeng
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 2
  givenname: Zhe
  surname: Huang
  fullname: Huang, Zhe
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 3
  givenname: Junming
  surname: Ren
  fullname: Ren, Junming
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 4
  givenname: Zhirong
  surname: Zhang
  fullname: Zhang, Zhirong
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 5
  givenname: Peng
  surname: He
  fullname: He, Peng
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 6
  givenname: Yangxin
  surname: Li
  fullname: Li, Yangxin
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 7
  givenname: Jianhui
  surname: Ma
  fullname: Ma, Jianhui
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 8
  givenname: Wanze
  surname: Chen
  fullname: Chen, Wanze
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 9
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 10
  givenname: Xiaojuan
  surname: Zhou
  fullname: Zhou, Xiaojuan
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 11
  givenname: Zhentao
  surname: Yang
  fullname: Yang, Zhentao
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 12
  givenname: Su-Qin
  surname: Wu
  fullname: Wu, Su-Qin
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 13
  givenname: Lanfen
  surname: Chen
  fullname: Chen, Lanfen
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
– sequence: 14
  givenname: Jiahuai
  surname: Han
  fullname: Han, Jiahuai
  email: jhan@xmu.edu.cn, jhan@scripps.edu
  organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23835476$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v1DAQxS3UirYLFz4ACuKCqLKM4zh2LkhVxZ9KW3GBs5XYk113E3trJ0h8-zrssipVL7Yl_96bNzMX5MR5h4S8obCkwOQnHZYFULas6QtyTkUpcyGZPElvAJpDBcUZuYjxDqDgJacvyVnBJOOlqM7J6rbf9tnWeb3105gNVmNmcPAujqEZMRs3mFlnbNyhi03bYxZ8OnyX_RValznUwe9GH218RU67po_4-nAvyK-vX35ef89XP77dXF-tcs1ZOeaaCdayCtqalbSs0NRtU_G66URldCmRdlRqNIKxwkABDOoWuKm4MZrLggNbkM97393UDmg0uhS2V7tghyb8Ub6x6v8fZzdq7X-rVJjySiaDDweD4O8njKMabNTY941DP0VFSyo4A5b4BXn_BL3zU3CpvZmqQCZwpt4-TnSM8m_QCfi4B9KwYgzYHREKat6i0kHNW1Q1TTA8gbUdm9H6uRvbPy-53Eti8nVrDI9iPke_OxTYeLe-T4JjnFKAkEII9gB9w7hl
CitedBy_id crossref_primary_10_1038_s41598_021_88970_6
crossref_primary_10_1155_2016_6089430
crossref_primary_10_1007_s00018_016_2192_3
crossref_primary_10_1084_jem_20182351
crossref_primary_10_1002_hep_28263
crossref_primary_10_1016_j_yjmcc_2018_01_018
crossref_primary_10_1016_j_bbadis_2021_166089
crossref_primary_10_1155_2015_128076
crossref_primary_10_1016_j_sbi_2024_102891
crossref_primary_10_1038_cddis_2015_240
crossref_primary_10_1111_imcb_12279
crossref_primary_10_1186_s13287_020_01940_z
crossref_primary_10_1016_j_bbcan_2016_03_003
crossref_primary_10_1016_j_cca_2015_01_026
crossref_primary_10_3390_biom11060803
crossref_primary_10_1002_mco2_108
crossref_primary_10_1172_jci_insight_94979
crossref_primary_10_1016_j_semcdb_2014_07_013
crossref_primary_10_1111_jgh_14740
crossref_primary_10_1172_jci_insight_98411
crossref_primary_10_1042_BSR20150246
crossref_primary_10_1111_jgh_16368
crossref_primary_10_1007_s00535_019_01644_z
crossref_primary_10_1038_nrm_2016_149
crossref_primary_10_1128_MCB_00497_16
crossref_primary_10_3389_fonc_2022_955186
crossref_primary_10_1021_acs_jmedchem_3c00665
crossref_primary_10_1161_CIRCRESAHA_116_305421
crossref_primary_10_1038_s41419_021_03847_w
crossref_primary_10_3390_nu14030604
crossref_primary_10_1101_cshperspect_a037036
crossref_primary_10_1248_yakushi_20_00161
crossref_primary_10_7554_eLife_27692
crossref_primary_10_1155_2021_2064162
crossref_primary_10_1038_s41420_024_01957_w
crossref_primary_10_1038_s12276_019_0278_3
crossref_primary_10_1038_s41467_018_04714_7
crossref_primary_10_1038_s41418_023_01121_4
crossref_primary_10_1038_cddis_2014_548
crossref_primary_10_1038_ncomms10973
crossref_primary_10_1242_jcs_093575
crossref_primary_10_1038_s41586_020_2796_5
crossref_primary_10_1016_j_trecan_2021_09_003
crossref_primary_10_3390_biomedicines10010127
crossref_primary_10_1073_pnas_1908355116
crossref_primary_10_3389_fcell_2021_789948
crossref_primary_10_1016_j_bone_2021_116168
crossref_primary_10_1042_BJ20131270
crossref_primary_10_1007_s10735_024_10350_x
crossref_primary_10_1111_jcmm_12987
crossref_primary_10_3892_mmr_2020_11010
crossref_primary_10_1007_s00109_021_02126_7
crossref_primary_10_1016_j_coi_2015_11_004
crossref_primary_10_1038_cdd_2017_84
crossref_primary_10_1007_s10753_023_01909_z
crossref_primary_10_1111_jcmm_17634
crossref_primary_10_1038_s41419_018_0524_y
crossref_primary_10_1038_s41418_019_0457_8
crossref_primary_10_1038_s41422_020_00393_6
crossref_primary_10_1186_s40478_022_01332_9
crossref_primary_10_1038_s41467_020_16819_z
crossref_primary_10_1016_j_bbrc_2018_03_074
crossref_primary_10_1016_j_jormas_2025_102279
crossref_primary_10_1038_s41418_017_0012_4
crossref_primary_10_1371_journal_pone_0207760
crossref_primary_10_1038_s41420_022_00869_x
crossref_primary_10_1016_j_bbrc_2018_05_120
crossref_primary_10_1016_j_celrep_2016_05_032
crossref_primary_10_1073_pnas_1715742114
crossref_primary_10_1039_D1FO03741B
crossref_primary_10_1016_j_jncc_2022_08_007
crossref_primary_10_1538_expanim_63_349
crossref_primary_10_1016_j_chemosphere_2018_11_140
crossref_primary_10_1152_physrev_00044_2023
crossref_primary_10_1038_s41577_020_00456_0
crossref_primary_10_1016_j_tcb_2022_05_008
crossref_primary_10_1038_s41419_024_06514_y
crossref_primary_10_1139_cjpp_2016_0609
crossref_primary_10_1155_2021_4187398
crossref_primary_10_1038_nm_4017
crossref_primary_10_1146_annurev_biochem_060815_014830
crossref_primary_10_1016_j_nbd_2019_05_004
crossref_primary_10_1038_s41418_018_0212_6
crossref_primary_10_1038_srep24547
crossref_primary_10_3748_wjg_v20_i35_12526
crossref_primary_10_1371_journal_pbio_3001304
crossref_primary_10_4155_fmc_2019_0229
crossref_primary_10_1007_s10495_018_1475_6
crossref_primary_10_1038_ncb3120
crossref_primary_10_1016_j_celrep_2014_04_026
crossref_primary_10_1080_15384047_2016_1210732
crossref_primary_10_1016_j_immuni_2013_08_020
crossref_primary_10_1038_s41374_019_0319_5
crossref_primary_10_1016_j_biopha_2018_06_111
crossref_primary_10_1097_MOH_0000000000000148
crossref_primary_10_1016_j_molcel_2014_03_003
crossref_primary_10_1016_j_celrep_2019_07_077
crossref_primary_10_1038_s41590_018_0188_x
crossref_primary_10_1016_j_biochi_2017_02_015
crossref_primary_10_1016_j_canlet_2019_05_034
crossref_primary_10_1089_ten_tea_2023_0139
crossref_primary_10_1007_s10620_024_08530_6
crossref_primary_10_1155_2015_630265
crossref_primary_10_1007_s00018_016_2190_5
crossref_primary_10_1038_cdd_2017_149
crossref_primary_10_1016_j_semcdb_2014_06_004
crossref_primary_10_1038_cdd_2017_65
crossref_primary_10_1152_physrev_00022_2018
crossref_primary_10_1016_j_tcb_2015_01_001
crossref_primary_10_1016_j_semcdb_2014_08_010
crossref_primary_10_1021_acschembio_0c00482
crossref_primary_10_1038_s41418_018_0262_9
crossref_primary_10_1016_j_celrep_2013_10_034
crossref_primary_10_1038_s41580_023_00689_6
crossref_primary_10_1038_s41419_018_0371_x
crossref_primary_10_1111_imr_12304
crossref_primary_10_1016_j_tibs_2014_10_003
crossref_primary_10_1073_pnas_2110476118
crossref_primary_10_1007_s10741_016_9537_8
crossref_primary_10_1111_dgd_12101
crossref_primary_10_1038_cdd_2017_78
crossref_primary_10_1016_j_intimp_2023_110950
crossref_primary_10_1016_j_celrep_2024_114778
crossref_primary_10_1007_s10620_021_07322_6
crossref_primary_10_1002_eji_202350475
crossref_primary_10_1016_j_molcel_2014_11_001
crossref_primary_10_1038_nrm3737
crossref_primary_10_1038_s41392_018_0018_5
crossref_primary_10_1016_j_nmd_2024_03_006
crossref_primary_10_1038_s41419_021_03746_0
crossref_primary_10_1038_cddis_2017_286
crossref_primary_10_1016_j_semcdb_2014_02_006
crossref_primary_10_1042_BJ20150586
crossref_primary_10_3390_genes15101297
crossref_primary_10_1016_j_ajpath_2019_10_012
crossref_primary_10_1111_imr_12536
crossref_primary_10_1146_annurev_immunol_111319_023800
crossref_primary_10_1161_ATVBAHA_122_318062
crossref_primary_10_1007_s10495_019_01589_x
crossref_primary_10_1038_cr_2014_17
crossref_primary_10_1038_nri3834
crossref_primary_10_1002_jev2_12261
crossref_primary_10_1016_j_immuni_2013_06_018
crossref_primary_10_1146_annurev_pathol_052016_100247
crossref_primary_10_1016_j_isci_2019_05_011
crossref_primary_10_1038_s41420_023_01655_z
crossref_primary_10_1038_s41467_018_02935_4
crossref_primary_10_1186_s10020_018_0065_y
crossref_primary_10_1080_13543776_2016_1230201
crossref_primary_10_1016_j_intimp_2023_109974
crossref_primary_10_1038_s41467_023_41724_6
crossref_primary_10_1038_s41419_023_06065_8
crossref_primary_10_1016_j_neurobiolaging_2018_03_006
crossref_primary_10_1073_pnas_1401857111
crossref_primary_10_1186_s12931_018_0756_5
crossref_primary_10_1016_j_bcp_2014_06_021
crossref_primary_10_1038_icb_2016_125
crossref_primary_10_3389_fcell_2022_826904
crossref_primary_10_3389_fimmu_2018_02379
crossref_primary_10_1016_j_semcdb_2020_08_007
crossref_primary_10_1016_j_scib_2021_01_025
crossref_primary_10_1161_ATVBAHA_119_313640
crossref_primary_10_3389_fimmu_2018_01163
crossref_primary_10_1016_j_tox_2022_153140
crossref_primary_10_1007_s10753_017_0632_3
crossref_primary_10_3389_fphar_2021_773562
crossref_primary_10_3389_fphys_2021_690423
crossref_primary_10_1016_j_immuni_2016_07_016
crossref_primary_10_1038_ncomms9371
crossref_primary_10_1080_17460441_2018_1457644
crossref_primary_10_1016_j_immuni_2024_02_011
crossref_primary_10_1186_s12967_017_1189_5
crossref_primary_10_1038_s41418_018_0214_4
crossref_primary_10_3390_ijms23137023
crossref_primary_10_1007_s11010_019_03546_3
crossref_primary_10_2958_suizo_31_48
crossref_primary_10_1007_s00018_016_2189_y
crossref_primary_10_1038_s41419_022_05066_3
crossref_primary_10_1111_1346_8138_15929
crossref_primary_10_1016_j_semcdb_2014_07_003
crossref_primary_10_1038_cddis_2015_316
crossref_primary_10_1038_cdd_2017_49
crossref_primary_10_1016_j_virusres_2014_10_017
crossref_primary_10_1038_cr_2015_9
crossref_primary_10_1016_j_molmet_2019_02_003
crossref_primary_10_1038_ni_3206
crossref_primary_10_3389_fonc_2023_1110939
crossref_primary_10_1038_ncomms7282
crossref_primary_10_1038_cdd_2014_137
crossref_primary_10_1038_s41420_024_02014_2
crossref_primary_10_1016_j_tips_2016_12_005
crossref_primary_10_3389_fcell_2022_942500
crossref_primary_10_1016_j_steroids_2015_02_007
crossref_primary_10_1016_j_jcmgh_2016_04_002
crossref_primary_10_1038_s41419_021_03418_z
crossref_primary_10_1002_ctm2_1334
crossref_primary_10_1016_j_molcel_2020_09_004
crossref_primary_10_1101_gad_312561_118
crossref_primary_10_1016_j_tibs_2018_11_002
crossref_primary_10_1111_imm_13775
crossref_primary_10_1152_physrev_00045_2017
crossref_primary_10_1053_j_gastro_2014_07_018
crossref_primary_10_1038_ncb2883
crossref_primary_10_1016_j_cell_2020_03_040
crossref_primary_10_1080_14728222_2020_1758668
crossref_primary_10_3390_antiox9060524
crossref_primary_10_1016_j_kint_2019_02_009
crossref_primary_10_1016_j_bbrc_2017_10_032
crossref_primary_10_1016_j_cellsig_2017_01_004
crossref_primary_10_12688_f1000research_7046_1
crossref_primary_10_1038_s41419_025_07436_z
crossref_primary_10_1111_bph_15499
crossref_primary_10_1016_j_devcel_2016_04_018
crossref_primary_10_1016_j_molimm_2020_11_018
crossref_primary_10_1038_nrd_2015_6
crossref_primary_10_1038_s41419_018_0936_8
crossref_primary_10_1080_21505594_2023_2258057
crossref_primary_10_1016_j_bbrc_2021_07_043
crossref_primary_10_1038_s41419_021_03636_5
crossref_primary_10_1186_s11658_024_00602_9
crossref_primary_10_1186_1471_2407_14_74
crossref_primary_10_1523_ENEURO_0308_18_2018
crossref_primary_10_3390_cells10051035
crossref_primary_10_1073_pnas_1408987111
crossref_primary_10_1038_s44161_024_00470_8
crossref_primary_10_24884_1682_6655_2016_15_3_81_85
crossref_primary_10_1038_cr_2014_140
crossref_primary_10_18632_oncotarget_7924
crossref_primary_10_1038_s41418_018_0061_3
crossref_primary_10_1038_nature14191
crossref_primary_10_1681_ASN_2014080741
crossref_primary_10_15252_embr_201743947
crossref_primary_10_3389_fonc_2022_892813
crossref_primary_10_1042_BJ20150678
crossref_primary_10_1007_s00018_016_2198_x
crossref_primary_10_1038_s12276_022_00868_z
crossref_primary_10_1172_jci_insight_128834
crossref_primary_10_1016_j_yexcr_2019_111674
crossref_primary_10_1016_j_bbrc_2019_09_125
crossref_primary_10_1111_febs_13120
crossref_primary_10_1038_s41418_018_0179_3
crossref_primary_10_4166_kjg_2014_64_4_182
crossref_primary_10_1016_j_it_2019_03_006
crossref_primary_10_1038_cdd_2016_46
crossref_primary_10_1038_nrm3999
crossref_primary_10_1038_s41418_024_01314_5
crossref_primary_10_3389_fimmu_2024_1394857
crossref_primary_10_1016_j_celrep_2017_04_011
crossref_primary_10_3389_fcell_2023_1229788
crossref_primary_10_1007_s10620_024_08310_2
crossref_primary_10_1186_s12917_019_2167_3
crossref_primary_10_3389_fimmu_2017_01809
crossref_primary_10_1111_raq_12533
crossref_primary_10_1155_2022_4499219
crossref_primary_10_1074_jbc_M114_547547
crossref_primary_10_1111_mmi_14874
crossref_primary_10_1111_1440_1681_13800
crossref_primary_10_1111_bph_15952
crossref_primary_10_1111_febs_15898
crossref_primary_10_1111_imr_12551
crossref_primary_10_3389_fmicb_2017_00303
crossref_primary_10_1016_j_ejphar_2016_05_007
crossref_primary_10_1016_j_lfs_2019_03_019
crossref_primary_10_1016_j_neuroscience_2015_10_049
crossref_primary_10_18705_2782_3806_2022_2_2_33_45
crossref_primary_10_1038_cdd_2014_76
crossref_primary_10_1007_s10495_023_01886_6
crossref_primary_10_1126_scisignal_abc6178
crossref_primary_10_1016_j_virol_2015_03_016
crossref_primary_10_1111_febs_13504
crossref_primary_10_1016_j_tcb_2016_01_006
crossref_primary_10_3389_fcell_2021_638382
crossref_primary_10_1038_s42003_022_04300_0
crossref_primary_10_1042_BCJ20240255
crossref_primary_10_3389_fimmu_2023_1203903
crossref_primary_10_1371_journal_ppat_1005910
crossref_primary_10_3727_096504017X15005102445191
crossref_primary_10_1177_1010428317711539
crossref_primary_10_1038_cr_2015_56
crossref_primary_10_1002_cbin_11705
crossref_primary_10_1038_s41420_024_02024_0
crossref_primary_10_1164_rccm_201510_2106CI
crossref_primary_10_1042_BCJ20210735
crossref_primary_10_3390_pr10112260
crossref_primary_10_1177_1533034616655909
crossref_primary_10_1042_BST20210517
crossref_primary_10_15252_embj_201694300
crossref_primary_10_3389_fonc_2024_1449696
crossref_primary_10_3389_fphys_2020_00526
crossref_primary_10_1002_embr_201337970
crossref_primary_10_1002_hep_27939
crossref_primary_10_1016_j_coi_2013_10_017
crossref_primary_10_1534_g3_116_032961
crossref_primary_10_1038_s41419_024_07242_z
crossref_primary_10_1056_NEJMra1310050
crossref_primary_10_1093_jpp_rgac094
crossref_primary_10_1152_ajplung_00065_2019
crossref_primary_10_3892_etm_2022_11357
crossref_primary_10_1101_cshperspect_a036376
crossref_primary_10_1016_j_mocell_2025_100199
crossref_primary_10_1146_annurev_immunol_032414_112248
crossref_primary_10_4049_jimmunol_1601717
crossref_primary_10_1038_mi_2016_101
crossref_primary_10_1016_j_bbrc_2019_03_107
crossref_primary_10_1016_j_celrep_2020_107650
crossref_primary_10_3389_fimmu_2018_00119
crossref_primary_10_1152_ajpheart_00259_2019
crossref_primary_10_1016_j_ajpath_2016_12_021
crossref_primary_10_1038_cr_2014_8
crossref_primary_10_1016_j_isci_2022_105118
crossref_primary_10_1038_s41418_024_01279_5
crossref_primary_10_1007_s10495_015_1192_3
crossref_primary_10_1038_cdd_2015_169
crossref_primary_10_1038_cddis_2017_313
crossref_primary_10_3389_fcell_2022_827714
crossref_primary_10_1038_ncb3314
crossref_primary_10_1111_jnc_14789
crossref_primary_10_1371_journal_pone_0130520
crossref_primary_10_1016_j_intimp_2022_108885
crossref_primary_10_1053_j_gastro_2016_09_048
crossref_primary_10_1016_j_tcb_2016_06_004
crossref_primary_10_1016_j_dci_2021_104022
crossref_primary_10_1016_j_molimm_2019_01_018
crossref_primary_10_1016_j_phrs_2023_106697
crossref_primary_10_1016_j_prp_2018_09_002
crossref_primary_10_1038_s41418_020_00625_7
crossref_primary_10_1038_s41419_020_2494_0
crossref_primary_10_1093_rheumatology_keab087
crossref_primary_10_3389_fendo_2023_1126661
crossref_primary_10_1038_cddis_2016_184
crossref_primary_10_1186_s13046_018_0976_z
crossref_primary_10_3389_fimmu_2017_00916
crossref_primary_10_3389_fncel_2017_00248
crossref_primary_10_1038_cdd_2014_126
crossref_primary_10_1038_cdd_2015_35
crossref_primary_10_1038_ni_3015
crossref_primary_10_1111_imcb_12382
crossref_primary_10_1038_cddis_2015_390
crossref_primary_10_1039_C7CC00667E
crossref_primary_10_5483_BMBRep_2015_48_6_068
crossref_primary_10_1038_cddis_2014_488
crossref_primary_10_1186_s12885_023_11168_8
crossref_primary_10_1016_j_pharmthera_2021_107979
crossref_primary_10_1038_cddis_2016_197
crossref_primary_10_1080_2162402X_2016_1149673
crossref_primary_10_1016_j_cell_2021_07_026
crossref_primary_10_1038_s41422_021_00583_w
crossref_primary_10_3389_fphar_2023_1103062
crossref_primary_10_1083_jcb_201810014
crossref_primary_10_1523_ENEURO_0058_23_2023
crossref_primary_10_1186_s13054_019_2482_x
crossref_primary_10_1016_j_kint_2015_10_008
crossref_primary_10_18632_oncotarget_19416
crossref_primary_10_1016_j_semcdb_2015_02_002
crossref_primary_10_1016_j_isci_2022_105121
crossref_primary_10_1038_ncomms10274
crossref_primary_10_3892_mmr_2022_12773
crossref_primary_10_1073_pnas_1717190115
crossref_primary_10_1172_JCI96147
crossref_primary_10_1101_cshperspect_a036368
crossref_primary_10_1038_s41419_020_2483_3
Cites_doi 10.1534/genetics.110.117002
10.1038/nature03317
10.1038/nchembio711
10.1016/j.chom.2012.01.016
10.1002/hep.22973
10.1016/j.cell.2012.06.019
10.1073/pnas.1116302108
10.1038/nature10400
10.1016/j.bbabio.2006.06.014
10.1038/cdd.2008.41
10.1038/ni.2159
10.1038/cr.2011.3
10.1016/j.cell.2008.03.036
10.2119/molmed.2011.00423
10.1038/nature11700
10.1016/j.immuni.2011.09.020
10.1038/nrm906
10.1038/nature09857
10.1128/MCB.24.4.1464-1469.2004
10.1073/pnas.1200012109
10.1016/j.cell.2009.05.037
10.1007/s10495-009-0320-3
10.4161/auto.5.2.7640
10.1016/j.tibs.2006.11.001
10.1016/j.cell.2008.10.044
10.1016/j.cell.2011.11.031
10.1084/jem.20110251
10.1016/j.celrep.2012.12.012
10.1038/cddis.2010.94
10.1038/nature10273
10.1126/science.1172308
10.1126/science.1172447
10.1073/pnas.1009179107
10.1007/s13238-012-2083-9
10.1038/cdd.2011.96
10.1074/jbc.M109.071332
10.1016/j.cell.2011.11.030
10.1016/j.cell.2009.05.021
10.1371/journal.pone.0041945
10.1371/journal.pone.0008870
10.1038/emboj.2012.18
10.1073/pnas.1211446109
10.1016/j.cellsig.2007.05.016
10.1126/science.1204094
10.1038/nature03434
10.4049/jimmunol.141.8.2629
ContentType Journal Article
Copyright The Author(s) 2013
Copyright Nature Publishing Group Aug 2013
Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Copyright_xml – notice: The Author(s) 2013
– notice: Copyright Nature Publishing Group Aug 2013
– notice: Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
W94
WU4
~WA
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/cr.2013.91
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


ProQuest Central Student
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis
Characterization of Mlkl knockout mice
EISSN 1748-7838
EndPage 1006
ExternalDocumentID PMC3731568
3033597141
23835476
10_1038_cr_2013_91
47078777
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2B.
2C.
2RA
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
5XL
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92L
92M
92Q
93N
9D9
9DA
AADWK
AANZL
AATNV
AAWBL
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABUWG
ACAOD
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACIWK
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AESKC
AEVLU
AEXYK
AFKRA
AFNRJ
AFRAH
AFSHS
AFUIB
AGEZK
AGGBP
AGHAI
AHMBA
AHSBF
AILAN
AJCLW
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRJV
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
NXXTH
NYICJ
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
RPM
RT1
S..
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
W94
WFFXF
WU4
XSB
~88
~WA
AACDK
AAHBH
AASML
AAXDM
AAYZH
ABAKF
ABZZP
ACMJI
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AIGIU
ALIPV
C6C
FIGPU
LGEZI
LOTEE
NADUK
ROL
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c534t-c373b360b934146ed9ba659af76dc48e1f18ced7332d020309b05d65ddc582503
IEDL.DBID C6C
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 14:04:30 EDT 2025
Fri Jul 11 10:53:54 EDT 2025
Fri Jul 25 09:03:06 EDT 2025
Wed Feb 19 01:53:54 EST 2025
Tue Jul 01 03:41:31 EDT 2025
Thu Apr 24 23:03:09 EDT 2025
Fri Feb 21 02:38:10 EST 2025
Wed Feb 14 10:26:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords apoptosis
Mlkl
Rip3
TNF
mice
necroptosis
Language English
License https://creativecommons.org/licenses/by-nc-nd/3.0
This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-c373b360b934146ed9ba659af76dc48e1f18ced7332d020309b05d65ddc582503
Notes Mlkl; necroptosis; apoptosis; TNF; Rip3; mice
31-1568/Q
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These three authors contributed equally to this work.
OpenAccessLink https://www.nature.com/articles/cr.2013.91
PMID 23835476
PQID 1416087537
PQPubID 536307
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3731568
proquest_miscellaneous_1417530337
proquest_journals_1416087537
pubmed_primary_23835476
crossref_primary_10_1038_cr_2013_91
crossref_citationtrail_10_1038_cr_2013_91
springer_journals_10_1038_cr_2013_91
chongqing_primary_47078777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Research
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wang, Du, Wang (CR43) 2008; 133
Degterev, Huang, Boyce (CR4) 2005; 1
Zhou, Han, Han (CR18) 2012; 3
Hitomi, Christofferson, Ng (CR12) 2008; 135
Trichonas, Murakami, Thanos (CR29) 2010; 107
Zhao, Jitkaew, Cai (CR36) 2012; 109
Carlson, Tan, Lillico (CR37) 2012; 109
Moulin, Anderton, Voss (CR11) 2012; 31
Galluzzi, Vitale, Abrams (CR22) 2012; 19
Huang, Shen (CR5) 2009; 5
Sun, Wang (CR6) 2012; 27
Zhang, Shao, Lin (CR23) 2009; 325
Li, McQuade, Siemer (CR33) 2012; 150
Zorde-Khvalevsky, Abramovitch, Barash (CR28) 2009; 50
Han, Zhong, Zhang (CR7) 2011; 12
Laster, Wood, Gooding (CR1) 1988; 141
Upton, Kaiser, Mocarski (CR15) 2012; 11
Wallach, Kang, Kovalenko (CR21) 2008; 15
Nakagawa, Shimizu, Watanabe (CR2) 2005; 434
Zhang, Zheng, Zhao (CR42) 2011; 21
Carbery, Ji, Harrington (CR41) 2010; 186
Zhu, Zhang, Bai, Li (CR16) 2011; 2
Sun, Wang, Wang (CR32) 2012; 148
Cho, Challa, Moquin (CR14) 2009; 137
He, Wang, Miao (CR24) 2009; 137
Ch'en, Tsau, Molkentin, Komatsu, Hedrick (CR10) 2011; 208
He, Liang, Shao, Wang (CR25) 2011; 108
Pinheiro da Silva, Nizet (CR46) 2009; 14
Wang, Jiang, Chen, Du, Wang (CR35) 2012; 148
Linkermann, Brasen, De Zen (CR17) 2012; 18
Festjens, Vanden Berghe, Vandenabeele (CR19) 2006; 1757
Duprez, Takahashi, Van Hauwermeiren (CR13) 2011; 35
Golstein, Kroemer (CR20) 2007; 32
Mashimo, Takizawa, Voigt (CR40) 2010; 5
Welz, Wullaert, Vlantis (CR44) 2011; 477
Geurts, Cost, Freyvert (CR39) 2009; 325
Feng, Yang, Mei (CR8) 2007; 19
Lin, Li, Yang (CR27) 2013; 3
Li, Li, Lan (CR30) 2010; 285
Gallo, Johnson (CR47) 2002; 3
Gunther, Martini, Wittkopf (CR31) 2011; 477
Kaiser, Upton, Long (CR9) 2011; 471
Narayan, Lee, Borenstein (CR34) 2012; 492
Bogdanove, Voytas (CR38) 2011; 333
Newton, Sun, Dixit (CR45) 2004; 24
Baines, Kaiser, Purcell (CR3) 2005; 434
Dunai, Imre, Barna (CR26) 2012; 7
S Zhu (BFcr201391_CR16) 2011; 2
G Trichonas (BFcr201391_CR29) 2010; 107
WJ Kaiser (BFcr201391_CR9) 2011; 471
D Wallach (BFcr201391_CR21) 2008; 15
Q Li (BFcr201391_CR30) 2010; 285
DF Carlson (BFcr201391_CR37) 2012; 109
C Gunther (BFcr201391_CR31) 2011; 477
A Degterev (BFcr201391_CR4) 2005; 1
Q Huang (BFcr201391_CR5) 2009; 5
AM Geurts (BFcr201391_CR39) 2009; 325
T Nakagawa (BFcr201391_CR2) 2005; 434
S He (BFcr201391_CR24) 2009; 137
S Feng (BFcr201391_CR8) 2007; 19
Z Wang (BFcr201391_CR35) 2012; 148
S He (BFcr201391_CR25) 2011; 108
J Li (BFcr201391_CR33) 2012; 150
P Golstein (BFcr201391_CR20) 2007; 32
Z Zhou (BFcr201391_CR18) 2012; 3
CP Baines (BFcr201391_CR3) 2005; 434
L Wang (BFcr201391_CR43) 2008; 133
J Zhao (BFcr201391_CR36) 2012; 109
H Sun (BFcr201391_CR6) 2012; 27
K Newton (BFcr201391_CR45) 2004; 24
N Narayan (BFcr201391_CR34) 2012; 492
J Han (BFcr201391_CR7) 2011; 12
KA Gallo (BFcr201391_CR47) 2002; 3
YS Cho (BFcr201391_CR14) 2009; 137
F Pinheiro da Silva (BFcr201391_CR46) 2009; 14
M Moulin (BFcr201391_CR11) 2012; 31
T Mashimo (BFcr201391_CR40) 2010; 5
L Sun (BFcr201391_CR32) 2012; 148
AJ Bogdanove (BFcr201391_CR38) 2011; 333
DW Zhang (BFcr201391_CR42) 2011; 21
L Galluzzi (BFcr201391_CR22) 2012; 19
IL Ch'en (BFcr201391_CR10) 2011; 208
N Festjens (BFcr201391_CR19) 2006; 1757
ZA Dunai (BFcr201391_CR26) 2012; 7
A Linkermann (BFcr201391_CR17) 2012; 18
J Hitomi (BFcr201391_CR12) 2008; 135
L Duprez (BFcr201391_CR13) 2011; 35
DW Zhang (BFcr201391_CR23) 2009; 325
E Zorde-Khvalevsky (BFcr201391_CR28) 2009; 50
PS Welz (BFcr201391_CR44) 2011; 477
ID Carbery (BFcr201391_CR41) 2010; 186
SM Laster (BFcr201391_CR1) 1988; 141
JW Upton (BFcr201391_CR15) 2012; 11
J Lin (BFcr201391_CR27) 2013; 3
21368762 - Nature. 2011 Mar 17;471(7338):368-72
22089220 - Nat Immunol. 2011 Dec;12(12):1143-9
22265413 - Cell. 2012 Jan 20;148(1-2):213-27
21359116 - Cell Death Dis. 2011;2:e115
12209126 - Nat Rev Mol Cell Biol. 2002 Sep;3(9):663-72
19139632 - Autophagy. 2009 Feb;5(2):273-6
21402742 - J Exp Med. 2011 Apr 11;208(4):633-41
19524513 - Cell. 2009 Jun 12;137(6):1112-23
22123964 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20054-9
19199035 - Apoptosis. 2009 Apr;14(4):509-21
22311969 - Physiology (Bethesda). 2012 Feb;27(1):43-52
22423968 - Cell Host Microbe. 2012 Mar 15;11(3):290-7
16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9
22860037 - PLoS One. 2012;7(7):e41945
18485876 - Cell. 2008 May 16;133(4):693-703
15800627 - Nature. 2005 Mar 31;434(7033):658-62
19628861 - Science. 2009 Jul 24;325(5939):433
19498109 - Science. 2009 Jul 17;325(5938):332-6
19524512 - Cell. 2009 Jun 12;137(6):1100-11
3171180 - J Immunol. 1988 Oct 15;141(8):2629-34
18794887 - Cell Death Differ. 2008 Oct;15(10):1533-41
20042608 - J Biol Chem. 2010 Mar 26;285(13):9535-44
17141506 - Trends Biochem Sci. 2007 Jan;32(1):37-43
19109899 - Cell. 2008 Dec 26;135(7):1311-23
21760595 - Cell Death Differ. 2012 Jan;19(1):107-20
21921917 - Nature. 2011 Sep 15;477(7364):335-9
16950166 - Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1371-87
22327219 - EMBO J. 2012 Apr 4;31(7):1679-91
22371307 - Mol Med. 2012;18:577-86
21960622 - Science. 2011 Sep 30;333(6051):1843-6
22817896 - Cell. 2012 Jul 20;150(2):339-50
22265414 - Cell. 2012 Jan 20;148(1-2):228-43
22421439 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5322-7
23073834 - Protein Cell. 2012 Nov;3(11):811-7
20111598 - PLoS One. 2010;5(1):e8870
23333278 - Cell Rep. 2013 Jan 31;3(1):200-10
19441101 - Hepatology. 2009 Jul;50(1):198-206
21804564 - Nature. 2011 Sep 15;477(7364):330-4
15800626 - Nature. 2005 Mar 31;434(7033):652-8
20628038 - Genetics. 2010 Oct;186(2):451-9
22195746 - Immunity. 2011 Dec 23;35(6):908-18
17644308 - Cell Signal. 2007 Oct;19(10):2056-67
23027955 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17382-7
21098270 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21695-700
14749364 - Mol Cell Biol. 2004 Feb;24(4):1464-9
21200403 - Cell Res. 2011 Feb;21(2):368-71
23201684 - Nature. 2012 Dec 13;492(7428):199-204
References_xml – volume: 186
  start-page: 451
  year: 2010
  end-page: 459
  ident: CR41
  article-title: Targeted genome modification in mice using zinc-finger nucleases
  publication-title: Genetics
  doi: 10.1534/genetics.110.117002
– volume: 434
  start-page: 652
  year: 2005
  end-page: 658
  ident: CR2
  article-title: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
  publication-title: Nature
  doi: 10.1038/nature03317
– volume: 1
  start-page: 112
  year: 2005
  end-page: 119
  ident: CR4
  article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio711
– volume: 11
  start-page: 290
  year: 2012
  end-page: 297
  ident: CR15
  article-title: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.016
– volume: 50
  start-page: 198
  year: 2009
  end-page: 206
  ident: CR28
  article-title: Toll-like receptor 3 signaling attenuates liver regeneration
  publication-title: Hepatology
  doi: 10.1002/hep.22973
– volume: 150
  start-page: 339
  year: 2012
  end-page: 350
  ident: CR33
  article-title: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.019
– volume: 27
  start-page: 43
  year: 2012
  end-page: 52
  ident: CR6
  article-title: Novel Ser/Thr protein phosphatases in cell death regulation
  publication-title: Physiology (Bethesda)
– volume: 108
  start-page: 20054
  year: 2011
  end-page: 20059
  ident: CR25
  article-title: Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1116302108
– volume: 477
  start-page: 335
  year: 2011
  end-page: 339
  ident: CR31
  article-title: Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis
  publication-title: Nature
  doi: 10.1038/nature10400
– volume: 1757
  start-page: 1371
  year: 2006
  end-page: 1387
  ident: CR19
  article-title: Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2006.06.014
– volume: 15
  start-page: 1533
  year: 2008
  end-page: 1541
  ident: CR21
  article-title: The extrinsic cell death pathway and the elan mortel
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2008.41
– volume: 12
  start-page: 1143
  year: 2011
  end-page: 1149
  ident: CR7
  article-title: Programmed necrosis: backup to and competitor with apoptosis in the immune system
  publication-title: Nat Immunol
  doi: 10.1038/ni.2159
– volume: 21
  start-page: 368
  year: 2011
  end-page: 371
  ident: CR42
  article-title: Multiple death pathways in TNF-treated fibroblasts: RIP3- and RIP1-dependent and independent routes
  publication-title: Cell Res
  doi: 10.1038/cr.2011.3
– volume: 133
  start-page: 693
  year: 2008
  end-page: 703
  ident: CR43
  article-title: TNF-alpha induces two distinct caspase-8 activation pathways
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.036
– volume: 18
  start-page: 577
  year: 2012
  end-page: 586
  ident: CR17
  article-title: Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock
  publication-title: Mol Med
  doi: 10.2119/molmed.2011.00423
– volume: 492
  start-page: 199
  year: 2012
  end-page: 204
  ident: CR34
  article-title: The NAD-dependent deacetylase SIRT2 is required for programmed necrosis
  publication-title: Nature
  doi: 10.1038/nature11700
– volume: 35
  start-page: 908
  year: 2011
  end-page: 918
  ident: CR13
  article-title: RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.020
– volume: 3
  start-page: 663
  year: 2002
  end-page: 672
  ident: CR47
  article-title: Mixed-lineage kinase control of JNK and p38 MAPK pathways
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm906
– volume: 471
  start-page: 368
  year: 2011
  end-page: 372
  ident: CR9
  article-title: RIP3 mediates the embryonic lethality of caspase-8-deficient mice
  publication-title: Nature
  doi: 10.1038/nature09857
– volume: 24
  start-page: 1464
  year: 2004
  end-page: 1469
  ident: CR45
  article-title: Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.4.1464-1469.2004
– volume: 109
  start-page: 5322
  year: 2012
  end-page: 5327
  ident: CR36
  article-title: Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1200012109
– volume: 137
  start-page: 1112
  year: 2009
  end-page: 1123
  ident: CR14
  article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.037
– volume: 14
  start-page: 509
  year: 2009
  end-page: 521
  ident: CR46
  article-title: Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection
  publication-title: Apoptosis
  doi: 10.1007/s10495-009-0320-3
– volume: 5
  start-page: 273
  year: 2009
  end-page: 276
  ident: CR5
  article-title: To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage
  publication-title: Autophagy
  doi: 10.4161/auto.5.2.7640
– volume: 32
  start-page: 37
  year: 2007
  end-page: 43
  ident: CR20
  article-title: Cell death by necrosis: towards a molecular definition
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2006.11.001
– volume: 135
  start-page: 1311
  year: 2008
  end-page: 1323
  ident: CR12
  article-title: Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2008.10.044
– volume: 148
  start-page: 213
  year: 2012
  end-page: 227
  ident: CR32
  article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.031
– volume: 208
  start-page: 633
  year: 2011
  end-page: 641
  ident: CR10
  article-title: Mechanisms of necroptosis in T cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20110251
– volume: 3
  start-page: 200
  year: 2013
  end-page: 210
  ident: CR27
  article-title: A role of RIP3-mediated macrophage necrosis in atherosclerosis development
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.12.012
– volume: 2
  start-page: e115
  year: 2011
  ident: CR16
  article-title: Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington's disease
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2010.94
– volume: 477
  start-page: 330
  year: 2011
  end-page: 334
  ident: CR44
  article-title: FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation
  publication-title: Nature
  doi: 10.1038/nature10273
– volume: 325
  start-page: 332
  year: 2009
  end-page: 336
  ident: CR23
  article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 325
  start-page: 433
  year: 2009
  ident: CR39
  article-title: Knockout rats via embryo microinjection of zinc-finger nucleases
  publication-title: Science
  doi: 10.1126/science.1172447
– volume: 107
  start-page: 21695
  year: 2010
  end-page: 21700
  ident: CR29
  article-title: Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1009179107
– volume: 3
  start-page: 811
  year: 2012
  end-page: 817
  ident: CR18
  article-title: New components of the necroptotic pathway
  publication-title: Protein Cell
  doi: 10.1007/s13238-012-2083-9
– volume: 19
  start-page: 107
  year: 2012
  end-page: 120
  ident: CR22
  article-title: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.96
– volume: 285
  start-page: 9535
  year: 2010
  end-page: 9544
  ident: CR30
  article-title: Receptor interacting protein 3 suppresses vascular smooth muscle cell growth by inhibition of the phosphoinositide 3-kinase-Akt axis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.071332
– volume: 148
  start-page: 228
  year: 2012
  end-page: 243
  ident: CR35
  article-title: The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.030
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 1111
  ident: CR24
  article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.021
– volume: 7
  start-page: e41945
  year: 2012
  ident: CR26
  article-title: Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041945
– volume: 5
  start-page: e8870
  year: 2010
  ident: CR40
  article-title: Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008870
– volume: 31
  start-page: 1679
  year: 2012
  end-page: 1691
  ident: CR11
  article-title: IAPs limit activation of RIP kinases by TNF receptor 1 during development
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.18
– volume: 109
  start-page: 17382
  year: 2012
  end-page: 17387
  ident: CR37
  article-title: Efficient TALEN-mediated gene knockout in livestock
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1211446109
– volume: 19
  start-page: 2056
  year: 2007
  end-page: 2067
  ident: CR8
  article-title: Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2007.05.016
– volume: 333
  start-page: 1843
  year: 2011
  end-page: 1846
  ident: CR38
  article-title: TAL effectors: customizable proteins for DNA targeting
  publication-title: Science
  doi: 10.1126/science.1204094
– volume: 434
  start-page: 658
  year: 2005
  end-page: 662
  ident: CR3
  article-title: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death
  publication-title: Nature
  doi: 10.1038/nature03434
– volume: 141
  start-page: 2629
  year: 1988
  end-page: 2634
  ident: CR1
  article-title: Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis
  publication-title: J Immunol
– volume: 5
  start-page: 273
  year: 2009
  ident: BFcr201391_CR5
  publication-title: Autophagy
  doi: 10.4161/auto.5.2.7640
– volume: 325
  start-page: 332
  year: 2009
  ident: BFcr201391_CR23
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 150
  start-page: 339
  year: 2012
  ident: BFcr201391_CR33
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.019
– volume: 471
  start-page: 368
  year: 2011
  ident: BFcr201391_CR9
  publication-title: Nature
  doi: 10.1038/nature09857
– volume: 141
  start-page: 2629
  year: 1988
  ident: BFcr201391_CR1
  publication-title: J Immunol
  doi: 10.4049/jimmunol.141.8.2629
– volume: 434
  start-page: 658
  year: 2005
  ident: BFcr201391_CR3
  publication-title: Nature
  doi: 10.1038/nature03434
– volume: 135
  start-page: 1311
  year: 2008
  ident: BFcr201391_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2008.10.044
– volume: 35
  start-page: 908
  year: 2011
  ident: BFcr201391_CR13
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.020
– volume: 325
  start-page: 433
  year: 2009
  ident: BFcr201391_CR39
  publication-title: Science
  doi: 10.1126/science.1172447
– volume: 50
  start-page: 198
  year: 2009
  ident: BFcr201391_CR28
  publication-title: Hepatology
  doi: 10.1002/hep.22973
– volume: 133
  start-page: 693
  year: 2008
  ident: BFcr201391_CR43
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.036
– volume: 14
  start-page: 509
  year: 2009
  ident: BFcr201391_CR46
  publication-title: Apoptosis
  doi: 10.1007/s10495-009-0320-3
– volume: 18
  start-page: 577
  year: 2012
  ident: BFcr201391_CR17
  publication-title: Mol Med
  doi: 10.2119/molmed.2011.00423
– volume: 148
  start-page: 228
  year: 2012
  ident: BFcr201391_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.030
– volume: 208
  start-page: 633
  year: 2011
  ident: BFcr201391_CR10
  publication-title: J Exp Med
  doi: 10.1084/jem.20110251
– volume: 15
  start-page: 1533
  year: 2008
  ident: BFcr201391_CR21
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2008.41
– volume: 109
  start-page: 5322
  year: 2012
  ident: BFcr201391_CR36
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1200012109
– volume: 7
  start-page: e41945
  year: 2012
  ident: BFcr201391_CR26
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041945
– volume: 109
  start-page: 17382
  year: 2012
  ident: BFcr201391_CR37
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1211446109
– volume: 27
  start-page: 43
  year: 2012
  ident: BFcr201391_CR6
  publication-title: Physiology (Bethesda)
– volume: 11
  start-page: 290
  year: 2012
  ident: BFcr201391_CR15
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.016
– volume: 3
  start-page: 200
  year: 2013
  ident: BFcr201391_CR27
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.12.012
– volume: 477
  start-page: 330
  year: 2011
  ident: BFcr201391_CR44
  publication-title: Nature
  doi: 10.1038/nature10273
– volume: 24
  start-page: 1464
  year: 2004
  ident: BFcr201391_CR45
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.4.1464-1469.2004
– volume: 19
  start-page: 107
  year: 2012
  ident: BFcr201391_CR22
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.96
– volume: 148
  start-page: 213
  year: 2012
  ident: BFcr201391_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.031
– volume: 32
  start-page: 37
  year: 2007
  ident: BFcr201391_CR20
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2006.11.001
– volume: 1
  start-page: 112
  year: 2005
  ident: BFcr201391_CR4
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio711
– volume: 108
  start-page: 20054
  year: 2011
  ident: BFcr201391_CR25
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1116302108
– volume: 333
  start-page: 1843
  year: 2011
  ident: BFcr201391_CR38
  publication-title: Science
  doi: 10.1126/science.1204094
– volume: 1757
  start-page: 1371
  year: 2006
  ident: BFcr201391_CR19
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2006.06.014
– volume: 285
  start-page: 9535
  year: 2010
  ident: BFcr201391_CR30
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.071332
– volume: 186
  start-page: 451
  year: 2010
  ident: BFcr201391_CR41
  publication-title: Genetics
  doi: 10.1534/genetics.110.117002
– volume: 137
  start-page: 1112
  year: 2009
  ident: BFcr201391_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.037
– volume: 477
  start-page: 335
  year: 2011
  ident: BFcr201391_CR31
  publication-title: Nature
  doi: 10.1038/nature10400
– volume: 12
  start-page: 1143
  year: 2011
  ident: BFcr201391_CR7
  publication-title: Nat Immunol
  doi: 10.1038/ni.2159
– volume: 492
  start-page: 199
  year: 2012
  ident: BFcr201391_CR34
  publication-title: Nature
  doi: 10.1038/nature11700
– volume: 2
  start-page: e115
  year: 2011
  ident: BFcr201391_CR16
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2010.94
– volume: 21
  start-page: 368
  year: 2011
  ident: BFcr201391_CR42
  publication-title: Cell Res
  doi: 10.1038/cr.2011.3
– volume: 19
  start-page: 2056
  year: 2007
  ident: BFcr201391_CR8
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2007.05.016
– volume: 137
  start-page: 1100
  year: 2009
  ident: BFcr201391_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.021
– volume: 434
  start-page: 652
  year: 2005
  ident: BFcr201391_CR2
  publication-title: Nature
  doi: 10.1038/nature03317
– volume: 5
  start-page: e8870
  year: 2010
  ident: BFcr201391_CR40
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008870
– volume: 31
  start-page: 1679
  year: 2012
  ident: BFcr201391_CR11
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.18
– volume: 3
  start-page: 811
  year: 2012
  ident: BFcr201391_CR18
  publication-title: Protein Cell
  doi: 10.1007/s13238-012-2083-9
– volume: 107
  start-page: 21695
  year: 2010
  ident: BFcr201391_CR29
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1009179107
– volume: 3
  start-page: 663
  year: 2002
  ident: BFcr201391_CR47
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm906
– reference: 22089220 - Nat Immunol. 2011 Dec;12(12):1143-9
– reference: 16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9
– reference: 22817896 - Cell. 2012 Jul 20;150(2):339-50
– reference: 20042608 - J Biol Chem. 2010 Mar 26;285(13):9535-44
– reference: 21402742 - J Exp Med. 2011 Apr 11;208(4):633-41
– reference: 22421439 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5322-7
– reference: 16950166 - Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1371-87
– reference: 22195746 - Immunity. 2011 Dec 23;35(6):908-18
– reference: 19139632 - Autophagy. 2009 Feb;5(2):273-6
– reference: 21921917 - Nature. 2011 Sep 15;477(7364):335-9
– reference: 21804564 - Nature. 2011 Sep 15;477(7364):330-4
– reference: 12209126 - Nat Rev Mol Cell Biol. 2002 Sep;3(9):663-72
– reference: 20111598 - PLoS One. 2010;5(1):e8870
– reference: 21359116 - Cell Death Dis. 2011;2:e115
– reference: 20628038 - Genetics. 2010 Oct;186(2):451-9
– reference: 17141506 - Trends Biochem Sci. 2007 Jan;32(1):37-43
– reference: 21760595 - Cell Death Differ. 2012 Jan;19(1):107-20
– reference: 21098270 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21695-700
– reference: 22371307 - Mol Med. 2012;18:577-86
– reference: 19199035 - Apoptosis. 2009 Apr;14(4):509-21
– reference: 22123964 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20054-9
– reference: 19524512 - Cell. 2009 Jun 12;137(6):1100-11
– reference: 22860037 - PLoS One. 2012;7(7):e41945
– reference: 22265414 - Cell. 2012 Jan 20;148(1-2):228-43
– reference: 22423968 - Cell Host Microbe. 2012 Mar 15;11(3):290-7
– reference: 23027955 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17382-7
– reference: 22311969 - Physiology (Bethesda). 2012 Feb;27(1):43-52
– reference: 17644308 - Cell Signal. 2007 Oct;19(10):2056-67
– reference: 22327219 - EMBO J. 2012 Apr 4;31(7):1679-91
– reference: 19524513 - Cell. 2009 Jun 12;137(6):1112-23
– reference: 19441101 - Hepatology. 2009 Jul;50(1):198-206
– reference: 14749364 - Mol Cell Biol. 2004 Feb;24(4):1464-9
– reference: 19628861 - Science. 2009 Jul 24;325(5939):433
– reference: 23333278 - Cell Rep. 2013 Jan 31;3(1):200-10
– reference: 19109899 - Cell. 2008 Dec 26;135(7):1311-23
– reference: 22265413 - Cell. 2012 Jan 20;148(1-2):213-27
– reference: 23073834 - Protein Cell. 2012 Nov;3(11):811-7
– reference: 15800626 - Nature. 2005 Mar 31;434(7033):652-8
– reference: 19498109 - Science. 2009 Jul 17;325(5938):332-6
– reference: 21960622 - Science. 2011 Sep 30;333(6051):1843-6
– reference: 18485876 - Cell. 2008 May 16;133(4):693-703
– reference: 3171180 - J Immunol. 1988 Oct 15;141(8):2629-34
– reference: 21368762 - Nature. 2011 Mar 17;471(7338):368-72
– reference: 15800627 - Nature. 2005 Mar 31;434(7033):658-62
– reference: 23201684 - Nature. 2012 Dec 13;492(7428):199-204
– reference: 18794887 - Cell Death Differ. 2008 Oct;15(10):1533-41
– reference: 21200403 - Cell Res. 2011 Feb;21(2):368-71
SSID ssj0025451
Score 2.5660014
Snippet Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor...
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 994
SubjectTerms 631/45/127/1220
631/80/82/2344
631/80/86
Amino Acid Chloromethyl Ketones - pharmacology
Animals
Apoptosis
Base Sequence
Biomedical and Life Sciences
Cell Biology
Cell Line
Interleukin-1beta - metabolism
Interleukin-6 - metabolism
Life Sciences
Lipopolysaccharides - toxicity
Macrophages - drug effects
Macrophages - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria - drug effects
Mitochondria - metabolism
Mitogen-Activated Protein Kinase Kinases - metabolism
Necrosis
NF-kappa B - metabolism
NF-κB
Original
original-article
Protein Kinases - deficiency
Protein Kinases - genetics
Protein Kinases - metabolism
Receptor-Interacting Protein Serine-Threonine Kinases - deficiency
Receptor-Interacting Protein Serine-Threonine Kinases - genetics
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
Signal Transduction - drug effects
Tumor Necrosis Factor-alpha - pharmacology
Tumor Necrosis Factors - metabolism
坏死性
基因敲除
小鼠
巨噬细胞
白细胞介素
肿瘤坏死因子
胚胎成纤维细胞
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMGl4k1KQUb0wiE0Xr9PCCGqClFOVNpbtLEdWHXrbJvsgX_fGedRlkVccvEksTz2eD7P-BtCjiptTSVtnXuDp1VSgx10Ah5WuUJ4xnhAoHj2XZ2ei69zOR8O3NohrXK0iclQ-8bhGfkxA88B2de5_ri-yrFqFEZXhxIad8k9pC5D8KXnt4ALvIMEuFLakMJMnp6elJtjh1ygjH9Abs4HYGjizyvYKrY3px2Pczdx8q_oadqUTh6R_cGbpJ969T8md0J8Qu739SV_PyXfzlYXK3oRweY1m45i5XnqwyW6hMgQQcH5oxizbtcAZvEOFcVkQ9rUNL24jDQGLPHVNe2yfUbOT778-HyaD-UTcie56HLHNa-4KioLO5VQwdtqoaRd1Fp5J0xgNTMueM35zGM8srBVIb2S3jsJuLHgz8lebGJ4SaipmdSFXTBez4QR0nqJl24B_DBnYRFn5GAaw3Ld02SUAomEtNYZeT8OaukG4nGsf7EqUwCcm9Jdl6iM0rKMvJtkx-_8S-pw1E05LLm2vJ0gGXk7NcNiwQjIIoZmk2RAoOAo86JX5fQb8F24FFplRG8peRJAIu7tlrj8lQi5YaABBpuMHI3T4Y9u7fT-4P-9f0UezlLJDUwyPCR73fUmvAbHp6vepNl9A9aV_5Q
  priority: 102
  providerName: ProQuest
Title Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis
URI http://lib.cqvip.com/qk/85240X/201308/47078777.html
https://link.springer.com/article/10.1038/cr.2013.91
https://www.ncbi.nlm.nih.gov/pubmed/23835476
https://www.proquest.com/docview/1416087537
https://www.proquest.com/docview/1417530337
https://pubmed.ncbi.nlm.nih.gov/PMC3731568
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagFRIXxLspZWVELxwW4vX7CKtWFaIVQlTaW7SxHbrq4pQme-DfM-M81GU5cMnF49jy-DGfZ_wNIceltqaUtpp6g7dVUsM-6AR8rHK58IzxgEDx_EKdXYrPC7noaXKaPqyyo7RM2_QQHfbBIXcn4-_xofo-UrZj-N5czUdwBZZAAlcpREhh1E5HRcrNnbpIoHBVxx-_4FjYPoh2rMvdIMm_PKXpADp9TB71liP92PX1CbkX4lPyoMsl-fsZ-XK-vl7T6wj7W71pKWaZpz78RPMP2SAoGHoU_dPNDQBXfC9FMbCQ1hVNFVeRxoDpvNq6WTXPyeXpyff52bRPlTB1kot26rjmJVd5aeFUEip4Wy6VtMtKK--ECaxixgWvOZ959D3mtsylV9J7JwEj5vwF2Yt1DAeEmopJndsl49VMGCGtl_jAFoAOcxYWbEYOxzEsbjpKjEIgaZDWOiPvhkEtXE8yjrku1kVydnNTuNsClVFYlpG3o-zwn39JHQ26Kfrl1QBeYQqp-Dk0-GYshoWB3o5lDPUmyYBAzlHmZafKsRmwU7gUWmVEbyl5FEDS7e2SuLpK5Nsw0AB5TUaOh-lwp1s7vT_8P7FX5OEspdnAwMIjstfebsJrMHbackLu64WekP1PJxdfv03SnJ-kO6k_Dsf9zw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VItReEP9NKWBEOXAITeI4jg8IIaDa0t2eWmlvYWM7sOqSbJusUF-KZ2TG2aQsi7j1kosniTUzHs94xt8A7OdSpblQhW9SOq0SEu2gjvGhEh3EJgy5pUBxdJIMzuIvYzHegF_dXRgqq-xsojPUptJ0Rn4QoudA6Otcvp9f-NQ1irKrXQuNVi2O7dVPDNnqd0efUL6vo-jw8-nHgb_sKuBrwePG11zynCdBrtCAx4k1Kp8kQk0KmRgdpzYswlRbIzmPDKXpApUHwiTCGC0wnAo4fvcW3MaNN6ASQjm-DvDQG3EBnitTSqhyqIVD5emBJuzRkL8lLNAtNGzltwvcmlY3wzUPd71Q869srdsED-_B3aX3yj606nYfNmz5AO60_SyvHsJwNDufsfMSbWy1aBh1umfG_iAXlBApGDqbjHLk9RyDZ7qzxai4kVUFcy9OS1ZaainWVPW0fgRnN8LYx7BZVqXdAZYWoZCBmoS8iOI0FsoIuuSLwVaoFRoND3Z7HmbzFpYjiwm4SErpwZuOqZleAp1Tv41Z5hLuPM30ZUbCyFTowauetvvOv6j2OtlkyyVeZ9cK6cHLfhgXJ2VcJqWtFo4GCQJONE9aUfa_QV-Ji1gmHsgVIfcEBPy9OlJOvzsAcGQ0ht2pB_udOvwxrbXZ7_5_9i9ga3A6GmbDo5Pjp7AduXYfVOC4B5vN5cI-Q6eryZ87TWfw9aaX1m8jYTt2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIigXxJuUAkaUA4ewSRzH8QEhRFm19CEOVNpburEduuqSbLtZof41fh0zzqMsi7j1kosnieV5eMYz_gZgO5cqzYUqfJPSaZWQaAd1jA-V6CA2YcgtBYqHR8nucfxlJEZr8Ku7C0NllZ1NdIbaVJrOyAcheg6Evs7loGjLIr7uDD_Mzn3qIEWZ1q6dRiMi-_byJ4Zv8_d7O8jrN1E0_Pzt067fdhjwteBx7Wsuec6TIFdozOPEGpWPE6HGhUyMjlMbFmGqrZGcR4ZSdoHKA2ESYYwWGFoFHL97A25Kjtsm6pIcXQV76Jm4YM-VLCVURdRAo_J0oAmHNOTvCBd0A41c-f0ct6nljXHF210t2vwrc-s2xOE9uNt6suxjI3r3Yc2WD-BW09vy8iEcHE7PpuysRHtbLWpGXe-ZsT_IHSV0CoaOJ6N8-XyGgTTd32JU6MiqgrkXJyUrLbUXq6v5ZP4Ijq9lYR_DelmV9imwtAiFDNQ45EUUp7FQRtCFXwy8Qq3QgHiw2a9hNmsgOrKYQIyklB687RY10y3oOfXemGYu-c7TTF9kxIxMhR687mm77_yLaqvjTdaq-zy7Ek4PXvXDqKiUfRmXtlo4GiQIONE8aVjZ_wb9Ji5imXggl5jcExAI-PJIOTl1YOC40BiCpx5sd-Lwx7RWZr_5_9m_hNuoVNnB3tH-M7gTuc4fVOu4Bev1xcI-R_-rzl84QWdwct2a9RvlNT-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mlkl+knockout+mice+demonstrate+the+indispensable+role+of+Mlkl+in+necroptosis&rft.jtitle=Cell+research&rft.au=Wu%2C+Jianfeng&rft.au=Huang%2C+Zhe&rft.au=Ren%2C+Junming&rft.au=Zhang%2C+Zhirong&rft.date=2013-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=23&rft.issue=8&rft.spage=994&rft.epage=1006&rft_id=info:doi/10.1038%2Fcr.2013.91&rft_id=info%3Apmid%2F23835476&rft.externalDocID=PMC3731568
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg