Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activ...
Saved in:
Published in | Cell research Vol. 23; no. 8; pp. 994 - 1006 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1001-0602 1748-7838 1748-7838 |
DOI | 10.1038/cr.2013.91 |
Cover
Loading…
Abstract | Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. |
---|---|
AbstractList | Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl -deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl -deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl -deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl -deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1[beta] (IL-1[beta]), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. |
Author | Jianfeng Wu Zhe Huang Junming Ren Zhirong Zhang Peng He Yangxin Li Jianhui Ma Wanze Chen Yingying Zhang Xiaojuan Zhou Zhentao Yang Su-Qin Wu Lanfen Chen Jiahuai Han |
AuthorAffiliation | State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China |
Author_xml | – sequence: 1 givenname: Jianfeng surname: Wu fullname: Wu, Jianfeng organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 2 givenname: Zhe surname: Huang fullname: Huang, Zhe organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 3 givenname: Junming surname: Ren fullname: Ren, Junming organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 4 givenname: Zhirong surname: Zhang fullname: Zhang, Zhirong organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 5 givenname: Peng surname: He fullname: He, Peng organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 6 givenname: Yangxin surname: Li fullname: Li, Yangxin organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 7 givenname: Jianhui surname: Ma fullname: Ma, Jianhui organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 8 givenname: Wanze surname: Chen fullname: Chen, Wanze organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 9 givenname: Yingying surname: Zhang fullname: Zhang, Yingying organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 10 givenname: Xiaojuan surname: Zhou fullname: Zhou, Xiaojuan organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 11 givenname: Zhentao surname: Yang fullname: Yang, Zhentao organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 12 givenname: Su-Qin surname: Wu fullname: Wu, Su-Qin organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 13 givenname: Lanfen surname: Chen fullname: Chen, Lanfen organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University – sequence: 14 givenname: Jiahuai surname: Han fullname: Han, Jiahuai email: jhan@xmu.edu.cn, jhan@scripps.edu organization: State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23835476$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9v1DAQxS3UirYLFz4ACuKCqLKM4zh2LkhVxZ9KW3GBs5XYk113E3trJ0h8-zrssipVL7Yl_96bNzMX5MR5h4S8obCkwOQnHZYFULas6QtyTkUpcyGZPElvAJpDBcUZuYjxDqDgJacvyVnBJOOlqM7J6rbf9tnWeb3105gNVmNmcPAujqEZMRs3mFlnbNyhi03bYxZ8OnyX_RValznUwe9GH218RU67po_4-nAvyK-vX35ef89XP77dXF-tcs1ZOeaaCdayCtqalbSs0NRtU_G66URldCmRdlRqNIKxwkABDOoWuKm4MZrLggNbkM97393UDmg0uhS2V7tghyb8Ub6x6v8fZzdq7X-rVJjySiaDDweD4O8njKMabNTY941DP0VFSyo4A5b4BXn_BL3zU3CpvZmqQCZwpt4-TnSM8m_QCfi4B9KwYgzYHREKat6i0kHNW1Q1TTA8gbUdm9H6uRvbPy-53Eti8nVrDI9iPke_OxTYeLe-T4JjnFKAkEII9gB9w7hl |
CitedBy_id | crossref_primary_10_1038_s41598_021_88970_6 crossref_primary_10_1155_2016_6089430 crossref_primary_10_1007_s00018_016_2192_3 crossref_primary_10_1084_jem_20182351 crossref_primary_10_1002_hep_28263 crossref_primary_10_1016_j_yjmcc_2018_01_018 crossref_primary_10_1016_j_bbadis_2021_166089 crossref_primary_10_1155_2015_128076 crossref_primary_10_1016_j_sbi_2024_102891 crossref_primary_10_1038_cddis_2015_240 crossref_primary_10_1111_imcb_12279 crossref_primary_10_1186_s13287_020_01940_z crossref_primary_10_1016_j_bbcan_2016_03_003 crossref_primary_10_1016_j_cca_2015_01_026 crossref_primary_10_3390_biom11060803 crossref_primary_10_1002_mco2_108 crossref_primary_10_1172_jci_insight_94979 crossref_primary_10_1016_j_semcdb_2014_07_013 crossref_primary_10_1111_jgh_14740 crossref_primary_10_1172_jci_insight_98411 crossref_primary_10_1042_BSR20150246 crossref_primary_10_1111_jgh_16368 crossref_primary_10_1007_s00535_019_01644_z crossref_primary_10_1038_nrm_2016_149 crossref_primary_10_1128_MCB_00497_16 crossref_primary_10_3389_fonc_2022_955186 crossref_primary_10_1021_acs_jmedchem_3c00665 crossref_primary_10_1161_CIRCRESAHA_116_305421 crossref_primary_10_1038_s41419_021_03847_w crossref_primary_10_3390_nu14030604 crossref_primary_10_1101_cshperspect_a037036 crossref_primary_10_1248_yakushi_20_00161 crossref_primary_10_7554_eLife_27692 crossref_primary_10_1155_2021_2064162 crossref_primary_10_1038_s41420_024_01957_w crossref_primary_10_1038_s12276_019_0278_3 crossref_primary_10_1038_s41467_018_04714_7 crossref_primary_10_1038_s41418_023_01121_4 crossref_primary_10_1038_cddis_2014_548 crossref_primary_10_1038_ncomms10973 crossref_primary_10_1242_jcs_093575 crossref_primary_10_1038_s41586_020_2796_5 crossref_primary_10_1016_j_trecan_2021_09_003 crossref_primary_10_3390_biomedicines10010127 crossref_primary_10_1073_pnas_1908355116 crossref_primary_10_3389_fcell_2021_789948 crossref_primary_10_1016_j_bone_2021_116168 crossref_primary_10_1042_BJ20131270 crossref_primary_10_1007_s10735_024_10350_x crossref_primary_10_1111_jcmm_12987 crossref_primary_10_3892_mmr_2020_11010 crossref_primary_10_1007_s00109_021_02126_7 crossref_primary_10_1016_j_coi_2015_11_004 crossref_primary_10_1038_cdd_2017_84 crossref_primary_10_1007_s10753_023_01909_z crossref_primary_10_1111_jcmm_17634 crossref_primary_10_1038_s41419_018_0524_y crossref_primary_10_1038_s41418_019_0457_8 crossref_primary_10_1038_s41422_020_00393_6 crossref_primary_10_1186_s40478_022_01332_9 crossref_primary_10_1038_s41467_020_16819_z crossref_primary_10_1016_j_bbrc_2018_03_074 crossref_primary_10_1016_j_jormas_2025_102279 crossref_primary_10_1038_s41418_017_0012_4 crossref_primary_10_1371_journal_pone_0207760 crossref_primary_10_1038_s41420_022_00869_x crossref_primary_10_1016_j_bbrc_2018_05_120 crossref_primary_10_1016_j_celrep_2016_05_032 crossref_primary_10_1073_pnas_1715742114 crossref_primary_10_1039_D1FO03741B crossref_primary_10_1016_j_jncc_2022_08_007 crossref_primary_10_1538_expanim_63_349 crossref_primary_10_1016_j_chemosphere_2018_11_140 crossref_primary_10_1152_physrev_00044_2023 crossref_primary_10_1038_s41577_020_00456_0 crossref_primary_10_1016_j_tcb_2022_05_008 crossref_primary_10_1038_s41419_024_06514_y crossref_primary_10_1139_cjpp_2016_0609 crossref_primary_10_1155_2021_4187398 crossref_primary_10_1038_nm_4017 crossref_primary_10_1146_annurev_biochem_060815_014830 crossref_primary_10_1016_j_nbd_2019_05_004 crossref_primary_10_1038_s41418_018_0212_6 crossref_primary_10_1038_srep24547 crossref_primary_10_3748_wjg_v20_i35_12526 crossref_primary_10_1371_journal_pbio_3001304 crossref_primary_10_4155_fmc_2019_0229 crossref_primary_10_1007_s10495_018_1475_6 crossref_primary_10_1038_ncb3120 crossref_primary_10_1016_j_celrep_2014_04_026 crossref_primary_10_1080_15384047_2016_1210732 crossref_primary_10_1016_j_immuni_2013_08_020 crossref_primary_10_1038_s41374_019_0319_5 crossref_primary_10_1016_j_biopha_2018_06_111 crossref_primary_10_1097_MOH_0000000000000148 crossref_primary_10_1016_j_molcel_2014_03_003 crossref_primary_10_1016_j_celrep_2019_07_077 crossref_primary_10_1038_s41590_018_0188_x crossref_primary_10_1016_j_biochi_2017_02_015 crossref_primary_10_1016_j_canlet_2019_05_034 crossref_primary_10_1089_ten_tea_2023_0139 crossref_primary_10_1007_s10620_024_08530_6 crossref_primary_10_1155_2015_630265 crossref_primary_10_1007_s00018_016_2190_5 crossref_primary_10_1038_cdd_2017_149 crossref_primary_10_1016_j_semcdb_2014_06_004 crossref_primary_10_1038_cdd_2017_65 crossref_primary_10_1152_physrev_00022_2018 crossref_primary_10_1016_j_tcb_2015_01_001 crossref_primary_10_1016_j_semcdb_2014_08_010 crossref_primary_10_1021_acschembio_0c00482 crossref_primary_10_1038_s41418_018_0262_9 crossref_primary_10_1016_j_celrep_2013_10_034 crossref_primary_10_1038_s41580_023_00689_6 crossref_primary_10_1038_s41419_018_0371_x crossref_primary_10_1111_imr_12304 crossref_primary_10_1016_j_tibs_2014_10_003 crossref_primary_10_1073_pnas_2110476118 crossref_primary_10_1007_s10741_016_9537_8 crossref_primary_10_1111_dgd_12101 crossref_primary_10_1038_cdd_2017_78 crossref_primary_10_1016_j_intimp_2023_110950 crossref_primary_10_1016_j_celrep_2024_114778 crossref_primary_10_1007_s10620_021_07322_6 crossref_primary_10_1002_eji_202350475 crossref_primary_10_1016_j_molcel_2014_11_001 crossref_primary_10_1038_nrm3737 crossref_primary_10_1038_s41392_018_0018_5 crossref_primary_10_1016_j_nmd_2024_03_006 crossref_primary_10_1038_s41419_021_03746_0 crossref_primary_10_1038_cddis_2017_286 crossref_primary_10_1016_j_semcdb_2014_02_006 crossref_primary_10_1042_BJ20150586 crossref_primary_10_3390_genes15101297 crossref_primary_10_1016_j_ajpath_2019_10_012 crossref_primary_10_1111_imr_12536 crossref_primary_10_1146_annurev_immunol_111319_023800 crossref_primary_10_1161_ATVBAHA_122_318062 crossref_primary_10_1007_s10495_019_01589_x crossref_primary_10_1038_cr_2014_17 crossref_primary_10_1038_nri3834 crossref_primary_10_1002_jev2_12261 crossref_primary_10_1016_j_immuni_2013_06_018 crossref_primary_10_1146_annurev_pathol_052016_100247 crossref_primary_10_1016_j_isci_2019_05_011 crossref_primary_10_1038_s41420_023_01655_z crossref_primary_10_1038_s41467_018_02935_4 crossref_primary_10_1186_s10020_018_0065_y crossref_primary_10_1080_13543776_2016_1230201 crossref_primary_10_1016_j_intimp_2023_109974 crossref_primary_10_1038_s41467_023_41724_6 crossref_primary_10_1038_s41419_023_06065_8 crossref_primary_10_1016_j_neurobiolaging_2018_03_006 crossref_primary_10_1073_pnas_1401857111 crossref_primary_10_1186_s12931_018_0756_5 crossref_primary_10_1016_j_bcp_2014_06_021 crossref_primary_10_1038_icb_2016_125 crossref_primary_10_3389_fcell_2022_826904 crossref_primary_10_3389_fimmu_2018_02379 crossref_primary_10_1016_j_semcdb_2020_08_007 crossref_primary_10_1016_j_scib_2021_01_025 crossref_primary_10_1161_ATVBAHA_119_313640 crossref_primary_10_3389_fimmu_2018_01163 crossref_primary_10_1016_j_tox_2022_153140 crossref_primary_10_1007_s10753_017_0632_3 crossref_primary_10_3389_fphar_2021_773562 crossref_primary_10_3389_fphys_2021_690423 crossref_primary_10_1016_j_immuni_2016_07_016 crossref_primary_10_1038_ncomms9371 crossref_primary_10_1080_17460441_2018_1457644 crossref_primary_10_1016_j_immuni_2024_02_011 crossref_primary_10_1186_s12967_017_1189_5 crossref_primary_10_1038_s41418_018_0214_4 crossref_primary_10_3390_ijms23137023 crossref_primary_10_1007_s11010_019_03546_3 crossref_primary_10_2958_suizo_31_48 crossref_primary_10_1007_s00018_016_2189_y crossref_primary_10_1038_s41419_022_05066_3 crossref_primary_10_1111_1346_8138_15929 crossref_primary_10_1016_j_semcdb_2014_07_003 crossref_primary_10_1038_cddis_2015_316 crossref_primary_10_1038_cdd_2017_49 crossref_primary_10_1016_j_virusres_2014_10_017 crossref_primary_10_1038_cr_2015_9 crossref_primary_10_1016_j_molmet_2019_02_003 crossref_primary_10_1038_ni_3206 crossref_primary_10_3389_fonc_2023_1110939 crossref_primary_10_1038_ncomms7282 crossref_primary_10_1038_cdd_2014_137 crossref_primary_10_1038_s41420_024_02014_2 crossref_primary_10_1016_j_tips_2016_12_005 crossref_primary_10_3389_fcell_2022_942500 crossref_primary_10_1016_j_steroids_2015_02_007 crossref_primary_10_1016_j_jcmgh_2016_04_002 crossref_primary_10_1038_s41419_021_03418_z crossref_primary_10_1002_ctm2_1334 crossref_primary_10_1016_j_molcel_2020_09_004 crossref_primary_10_1101_gad_312561_118 crossref_primary_10_1016_j_tibs_2018_11_002 crossref_primary_10_1111_imm_13775 crossref_primary_10_1152_physrev_00045_2017 crossref_primary_10_1053_j_gastro_2014_07_018 crossref_primary_10_1038_ncb2883 crossref_primary_10_1016_j_cell_2020_03_040 crossref_primary_10_1080_14728222_2020_1758668 crossref_primary_10_3390_antiox9060524 crossref_primary_10_1016_j_kint_2019_02_009 crossref_primary_10_1016_j_bbrc_2017_10_032 crossref_primary_10_1016_j_cellsig_2017_01_004 crossref_primary_10_12688_f1000research_7046_1 crossref_primary_10_1038_s41419_025_07436_z crossref_primary_10_1111_bph_15499 crossref_primary_10_1016_j_devcel_2016_04_018 crossref_primary_10_1016_j_molimm_2020_11_018 crossref_primary_10_1038_nrd_2015_6 crossref_primary_10_1038_s41419_018_0936_8 crossref_primary_10_1080_21505594_2023_2258057 crossref_primary_10_1016_j_bbrc_2021_07_043 crossref_primary_10_1038_s41419_021_03636_5 crossref_primary_10_1186_s11658_024_00602_9 crossref_primary_10_1186_1471_2407_14_74 crossref_primary_10_1523_ENEURO_0308_18_2018 crossref_primary_10_3390_cells10051035 crossref_primary_10_1073_pnas_1408987111 crossref_primary_10_1038_s44161_024_00470_8 crossref_primary_10_24884_1682_6655_2016_15_3_81_85 crossref_primary_10_1038_cr_2014_140 crossref_primary_10_18632_oncotarget_7924 crossref_primary_10_1038_s41418_018_0061_3 crossref_primary_10_1038_nature14191 crossref_primary_10_1681_ASN_2014080741 crossref_primary_10_15252_embr_201743947 crossref_primary_10_3389_fonc_2022_892813 crossref_primary_10_1042_BJ20150678 crossref_primary_10_1007_s00018_016_2198_x crossref_primary_10_1038_s12276_022_00868_z crossref_primary_10_1172_jci_insight_128834 crossref_primary_10_1016_j_yexcr_2019_111674 crossref_primary_10_1016_j_bbrc_2019_09_125 crossref_primary_10_1111_febs_13120 crossref_primary_10_1038_s41418_018_0179_3 crossref_primary_10_4166_kjg_2014_64_4_182 crossref_primary_10_1016_j_it_2019_03_006 crossref_primary_10_1038_cdd_2016_46 crossref_primary_10_1038_nrm3999 crossref_primary_10_1038_s41418_024_01314_5 crossref_primary_10_3389_fimmu_2024_1394857 crossref_primary_10_1016_j_celrep_2017_04_011 crossref_primary_10_3389_fcell_2023_1229788 crossref_primary_10_1007_s10620_024_08310_2 crossref_primary_10_1186_s12917_019_2167_3 crossref_primary_10_3389_fimmu_2017_01809 crossref_primary_10_1111_raq_12533 crossref_primary_10_1155_2022_4499219 crossref_primary_10_1074_jbc_M114_547547 crossref_primary_10_1111_mmi_14874 crossref_primary_10_1111_1440_1681_13800 crossref_primary_10_1111_bph_15952 crossref_primary_10_1111_febs_15898 crossref_primary_10_1111_imr_12551 crossref_primary_10_3389_fmicb_2017_00303 crossref_primary_10_1016_j_ejphar_2016_05_007 crossref_primary_10_1016_j_lfs_2019_03_019 crossref_primary_10_1016_j_neuroscience_2015_10_049 crossref_primary_10_18705_2782_3806_2022_2_2_33_45 crossref_primary_10_1038_cdd_2014_76 crossref_primary_10_1007_s10495_023_01886_6 crossref_primary_10_1126_scisignal_abc6178 crossref_primary_10_1016_j_virol_2015_03_016 crossref_primary_10_1111_febs_13504 crossref_primary_10_1016_j_tcb_2016_01_006 crossref_primary_10_3389_fcell_2021_638382 crossref_primary_10_1038_s42003_022_04300_0 crossref_primary_10_1042_BCJ20240255 crossref_primary_10_3389_fimmu_2023_1203903 crossref_primary_10_1371_journal_ppat_1005910 crossref_primary_10_3727_096504017X15005102445191 crossref_primary_10_1177_1010428317711539 crossref_primary_10_1038_cr_2015_56 crossref_primary_10_1002_cbin_11705 crossref_primary_10_1038_s41420_024_02024_0 crossref_primary_10_1164_rccm_201510_2106CI crossref_primary_10_1042_BCJ20210735 crossref_primary_10_3390_pr10112260 crossref_primary_10_1177_1533034616655909 crossref_primary_10_1042_BST20210517 crossref_primary_10_15252_embj_201694300 crossref_primary_10_3389_fonc_2024_1449696 crossref_primary_10_3389_fphys_2020_00526 crossref_primary_10_1002_embr_201337970 crossref_primary_10_1002_hep_27939 crossref_primary_10_1016_j_coi_2013_10_017 crossref_primary_10_1534_g3_116_032961 crossref_primary_10_1038_s41419_024_07242_z crossref_primary_10_1056_NEJMra1310050 crossref_primary_10_1093_jpp_rgac094 crossref_primary_10_1152_ajplung_00065_2019 crossref_primary_10_3892_etm_2022_11357 crossref_primary_10_1101_cshperspect_a036376 crossref_primary_10_1016_j_mocell_2025_100199 crossref_primary_10_1146_annurev_immunol_032414_112248 crossref_primary_10_4049_jimmunol_1601717 crossref_primary_10_1038_mi_2016_101 crossref_primary_10_1016_j_bbrc_2019_03_107 crossref_primary_10_1016_j_celrep_2020_107650 crossref_primary_10_3389_fimmu_2018_00119 crossref_primary_10_1152_ajpheart_00259_2019 crossref_primary_10_1016_j_ajpath_2016_12_021 crossref_primary_10_1038_cr_2014_8 crossref_primary_10_1016_j_isci_2022_105118 crossref_primary_10_1038_s41418_024_01279_5 crossref_primary_10_1007_s10495_015_1192_3 crossref_primary_10_1038_cdd_2015_169 crossref_primary_10_1038_cddis_2017_313 crossref_primary_10_3389_fcell_2022_827714 crossref_primary_10_1038_ncb3314 crossref_primary_10_1111_jnc_14789 crossref_primary_10_1371_journal_pone_0130520 crossref_primary_10_1016_j_intimp_2022_108885 crossref_primary_10_1053_j_gastro_2016_09_048 crossref_primary_10_1016_j_tcb_2016_06_004 crossref_primary_10_1016_j_dci_2021_104022 crossref_primary_10_1016_j_molimm_2019_01_018 crossref_primary_10_1016_j_phrs_2023_106697 crossref_primary_10_1016_j_prp_2018_09_002 crossref_primary_10_1038_s41418_020_00625_7 crossref_primary_10_1038_s41419_020_2494_0 crossref_primary_10_1093_rheumatology_keab087 crossref_primary_10_3389_fendo_2023_1126661 crossref_primary_10_1038_cddis_2016_184 crossref_primary_10_1186_s13046_018_0976_z crossref_primary_10_3389_fimmu_2017_00916 crossref_primary_10_3389_fncel_2017_00248 crossref_primary_10_1038_cdd_2014_126 crossref_primary_10_1038_cdd_2015_35 crossref_primary_10_1038_ni_3015 crossref_primary_10_1111_imcb_12382 crossref_primary_10_1038_cddis_2015_390 crossref_primary_10_1039_C7CC00667E crossref_primary_10_5483_BMBRep_2015_48_6_068 crossref_primary_10_1038_cddis_2014_488 crossref_primary_10_1186_s12885_023_11168_8 crossref_primary_10_1016_j_pharmthera_2021_107979 crossref_primary_10_1038_cddis_2016_197 crossref_primary_10_1080_2162402X_2016_1149673 crossref_primary_10_1016_j_cell_2021_07_026 crossref_primary_10_1038_s41422_021_00583_w crossref_primary_10_3389_fphar_2023_1103062 crossref_primary_10_1083_jcb_201810014 crossref_primary_10_1523_ENEURO_0058_23_2023 crossref_primary_10_1186_s13054_019_2482_x crossref_primary_10_1016_j_kint_2015_10_008 crossref_primary_10_18632_oncotarget_19416 crossref_primary_10_1016_j_semcdb_2015_02_002 crossref_primary_10_1016_j_isci_2022_105121 crossref_primary_10_1038_ncomms10274 crossref_primary_10_3892_mmr_2022_12773 crossref_primary_10_1073_pnas_1717190115 crossref_primary_10_1172_JCI96147 crossref_primary_10_1101_cshperspect_a036368 crossref_primary_10_1038_s41419_020_2483_3 |
Cites_doi | 10.1534/genetics.110.117002 10.1038/nature03317 10.1038/nchembio711 10.1016/j.chom.2012.01.016 10.1002/hep.22973 10.1016/j.cell.2012.06.019 10.1073/pnas.1116302108 10.1038/nature10400 10.1016/j.bbabio.2006.06.014 10.1038/cdd.2008.41 10.1038/ni.2159 10.1038/cr.2011.3 10.1016/j.cell.2008.03.036 10.2119/molmed.2011.00423 10.1038/nature11700 10.1016/j.immuni.2011.09.020 10.1038/nrm906 10.1038/nature09857 10.1128/MCB.24.4.1464-1469.2004 10.1073/pnas.1200012109 10.1016/j.cell.2009.05.037 10.1007/s10495-009-0320-3 10.4161/auto.5.2.7640 10.1016/j.tibs.2006.11.001 10.1016/j.cell.2008.10.044 10.1016/j.cell.2011.11.031 10.1084/jem.20110251 10.1016/j.celrep.2012.12.012 10.1038/cddis.2010.94 10.1038/nature10273 10.1126/science.1172308 10.1126/science.1172447 10.1073/pnas.1009179107 10.1007/s13238-012-2083-9 10.1038/cdd.2011.96 10.1074/jbc.M109.071332 10.1016/j.cell.2011.11.030 10.1016/j.cell.2009.05.021 10.1371/journal.pone.0041945 10.1371/journal.pone.0008870 10.1038/emboj.2012.18 10.1073/pnas.1211446109 10.1016/j.cellsig.2007.05.016 10.1126/science.1204094 10.1038/nature03434 10.4049/jimmunol.141.8.2629 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 Copyright Nature Publishing Group Aug 2013 Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
Copyright_xml | – notice: The Author(s) 2013 – notice: Copyright Nature Publishing Group Aug 2013 – notice: Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
DBID | 2RA 92L CQIGP W94 WU4 ~WA C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/cr.2013.91 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis Characterization of Mlkl knockout mice |
EISSN | 1748-7838 |
EndPage | 1006 |
ExternalDocumentID | PMC3731568 3033597141 23835476 10_1038_cr_2013_91 47078777 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV C6C FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c534t-c373b360b934146ed9ba659af76dc48e1f18ced7332d020309b05d65ddc582503 |
IEDL.DBID | C6C |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 14:04:30 EDT 2025 Fri Jul 11 10:53:54 EDT 2025 Fri Jul 25 09:03:06 EDT 2025 Wed Feb 19 01:53:54 EST 2025 Tue Jul 01 03:41:31 EDT 2025 Thu Apr 24 23:03:09 EDT 2025 Fri Feb 21 02:38:10 EST 2025 Wed Feb 14 10:26:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | apoptosis Mlkl Rip3 TNF mice necroptosis |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/3.0 This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-c373b360b934146ed9ba659af76dc48e1f18ced7332d020309b05d65ddc582503 |
Notes | Mlkl; necroptosis; apoptosis; TNF; Rip3; mice 31-1568/Q Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These three authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/cr.2013.91 |
PMID | 23835476 |
PQID | 1416087537 |
PQPubID | 536307 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3731568 proquest_miscellaneous_1417530337 proquest_journals_1416087537 pubmed_primary_23835476 crossref_primary_10_1038_cr_2013_91 crossref_citationtrail_10_1038_cr_2013_91 springer_journals_10_1038_cr_2013_91 chongqing_primary_47078777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Wang, Du, Wang (CR43) 2008; 133 Degterev, Huang, Boyce (CR4) 2005; 1 Zhou, Han, Han (CR18) 2012; 3 Hitomi, Christofferson, Ng (CR12) 2008; 135 Trichonas, Murakami, Thanos (CR29) 2010; 107 Zhao, Jitkaew, Cai (CR36) 2012; 109 Carlson, Tan, Lillico (CR37) 2012; 109 Moulin, Anderton, Voss (CR11) 2012; 31 Galluzzi, Vitale, Abrams (CR22) 2012; 19 Huang, Shen (CR5) 2009; 5 Sun, Wang (CR6) 2012; 27 Zhang, Shao, Lin (CR23) 2009; 325 Li, McQuade, Siemer (CR33) 2012; 150 Zorde-Khvalevsky, Abramovitch, Barash (CR28) 2009; 50 Han, Zhong, Zhang (CR7) 2011; 12 Laster, Wood, Gooding (CR1) 1988; 141 Upton, Kaiser, Mocarski (CR15) 2012; 11 Wallach, Kang, Kovalenko (CR21) 2008; 15 Nakagawa, Shimizu, Watanabe (CR2) 2005; 434 Zhang, Zheng, Zhao (CR42) 2011; 21 Carbery, Ji, Harrington (CR41) 2010; 186 Zhu, Zhang, Bai, Li (CR16) 2011; 2 Sun, Wang, Wang (CR32) 2012; 148 Cho, Challa, Moquin (CR14) 2009; 137 He, Wang, Miao (CR24) 2009; 137 Ch'en, Tsau, Molkentin, Komatsu, Hedrick (CR10) 2011; 208 He, Liang, Shao, Wang (CR25) 2011; 108 Pinheiro da Silva, Nizet (CR46) 2009; 14 Wang, Jiang, Chen, Du, Wang (CR35) 2012; 148 Linkermann, Brasen, De Zen (CR17) 2012; 18 Festjens, Vanden Berghe, Vandenabeele (CR19) 2006; 1757 Duprez, Takahashi, Van Hauwermeiren (CR13) 2011; 35 Golstein, Kroemer (CR20) 2007; 32 Mashimo, Takizawa, Voigt (CR40) 2010; 5 Welz, Wullaert, Vlantis (CR44) 2011; 477 Geurts, Cost, Freyvert (CR39) 2009; 325 Feng, Yang, Mei (CR8) 2007; 19 Lin, Li, Yang (CR27) 2013; 3 Li, Li, Lan (CR30) 2010; 285 Gallo, Johnson (CR47) 2002; 3 Gunther, Martini, Wittkopf (CR31) 2011; 477 Kaiser, Upton, Long (CR9) 2011; 471 Narayan, Lee, Borenstein (CR34) 2012; 492 Bogdanove, Voytas (CR38) 2011; 333 Newton, Sun, Dixit (CR45) 2004; 24 Baines, Kaiser, Purcell (CR3) 2005; 434 Dunai, Imre, Barna (CR26) 2012; 7 S Zhu (BFcr201391_CR16) 2011; 2 G Trichonas (BFcr201391_CR29) 2010; 107 WJ Kaiser (BFcr201391_CR9) 2011; 471 D Wallach (BFcr201391_CR21) 2008; 15 Q Li (BFcr201391_CR30) 2010; 285 DF Carlson (BFcr201391_CR37) 2012; 109 C Gunther (BFcr201391_CR31) 2011; 477 A Degterev (BFcr201391_CR4) 2005; 1 Q Huang (BFcr201391_CR5) 2009; 5 AM Geurts (BFcr201391_CR39) 2009; 325 T Nakagawa (BFcr201391_CR2) 2005; 434 S He (BFcr201391_CR24) 2009; 137 S Feng (BFcr201391_CR8) 2007; 19 Z Wang (BFcr201391_CR35) 2012; 148 S He (BFcr201391_CR25) 2011; 108 J Li (BFcr201391_CR33) 2012; 150 P Golstein (BFcr201391_CR20) 2007; 32 Z Zhou (BFcr201391_CR18) 2012; 3 CP Baines (BFcr201391_CR3) 2005; 434 L Wang (BFcr201391_CR43) 2008; 133 J Zhao (BFcr201391_CR36) 2012; 109 H Sun (BFcr201391_CR6) 2012; 27 K Newton (BFcr201391_CR45) 2004; 24 N Narayan (BFcr201391_CR34) 2012; 492 J Han (BFcr201391_CR7) 2011; 12 KA Gallo (BFcr201391_CR47) 2002; 3 YS Cho (BFcr201391_CR14) 2009; 137 F Pinheiro da Silva (BFcr201391_CR46) 2009; 14 M Moulin (BFcr201391_CR11) 2012; 31 T Mashimo (BFcr201391_CR40) 2010; 5 L Sun (BFcr201391_CR32) 2012; 148 AJ Bogdanove (BFcr201391_CR38) 2011; 333 DW Zhang (BFcr201391_CR42) 2011; 21 L Galluzzi (BFcr201391_CR22) 2012; 19 IL Ch'en (BFcr201391_CR10) 2011; 208 N Festjens (BFcr201391_CR19) 2006; 1757 ZA Dunai (BFcr201391_CR26) 2012; 7 A Linkermann (BFcr201391_CR17) 2012; 18 J Hitomi (BFcr201391_CR12) 2008; 135 L Duprez (BFcr201391_CR13) 2011; 35 DW Zhang (BFcr201391_CR23) 2009; 325 E Zorde-Khvalevsky (BFcr201391_CR28) 2009; 50 PS Welz (BFcr201391_CR44) 2011; 477 ID Carbery (BFcr201391_CR41) 2010; 186 SM Laster (BFcr201391_CR1) 1988; 141 JW Upton (BFcr201391_CR15) 2012; 11 J Lin (BFcr201391_CR27) 2013; 3 21368762 - Nature. 2011 Mar 17;471(7338):368-72 22089220 - Nat Immunol. 2011 Dec;12(12):1143-9 22265413 - Cell. 2012 Jan 20;148(1-2):213-27 21359116 - Cell Death Dis. 2011;2:e115 12209126 - Nat Rev Mol Cell Biol. 2002 Sep;3(9):663-72 19139632 - Autophagy. 2009 Feb;5(2):273-6 21402742 - J Exp Med. 2011 Apr 11;208(4):633-41 19524513 - Cell. 2009 Jun 12;137(6):1112-23 22123964 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20054-9 19199035 - Apoptosis. 2009 Apr;14(4):509-21 22311969 - Physiology (Bethesda). 2012 Feb;27(1):43-52 22423968 - Cell Host Microbe. 2012 Mar 15;11(3):290-7 16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9 22860037 - PLoS One. 2012;7(7):e41945 18485876 - Cell. 2008 May 16;133(4):693-703 15800627 - Nature. 2005 Mar 31;434(7033):658-62 19628861 - Science. 2009 Jul 24;325(5939):433 19498109 - Science. 2009 Jul 17;325(5938):332-6 19524512 - Cell. 2009 Jun 12;137(6):1100-11 3171180 - J Immunol. 1988 Oct 15;141(8):2629-34 18794887 - Cell Death Differ. 2008 Oct;15(10):1533-41 20042608 - J Biol Chem. 2010 Mar 26;285(13):9535-44 17141506 - Trends Biochem Sci. 2007 Jan;32(1):37-43 19109899 - Cell. 2008 Dec 26;135(7):1311-23 21760595 - Cell Death Differ. 2012 Jan;19(1):107-20 21921917 - Nature. 2011 Sep 15;477(7364):335-9 16950166 - Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1371-87 22327219 - EMBO J. 2012 Apr 4;31(7):1679-91 22371307 - Mol Med. 2012;18:577-86 21960622 - Science. 2011 Sep 30;333(6051):1843-6 22817896 - Cell. 2012 Jul 20;150(2):339-50 22265414 - Cell. 2012 Jan 20;148(1-2):228-43 22421439 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5322-7 23073834 - Protein Cell. 2012 Nov;3(11):811-7 20111598 - PLoS One. 2010;5(1):e8870 23333278 - Cell Rep. 2013 Jan 31;3(1):200-10 19441101 - Hepatology. 2009 Jul;50(1):198-206 21804564 - Nature. 2011 Sep 15;477(7364):330-4 15800626 - Nature. 2005 Mar 31;434(7033):652-8 20628038 - Genetics. 2010 Oct;186(2):451-9 22195746 - Immunity. 2011 Dec 23;35(6):908-18 17644308 - Cell Signal. 2007 Oct;19(10):2056-67 23027955 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17382-7 21098270 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21695-700 14749364 - Mol Cell Biol. 2004 Feb;24(4):1464-9 21200403 - Cell Res. 2011 Feb;21(2):368-71 23201684 - Nature. 2012 Dec 13;492(7428):199-204 |
References_xml | – volume: 186 start-page: 451 year: 2010 end-page: 459 ident: CR41 article-title: Targeted genome modification in mice using zinc-finger nucleases publication-title: Genetics doi: 10.1534/genetics.110.117002 – volume: 434 start-page: 652 year: 2005 end-page: 658 ident: CR2 article-title: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death publication-title: Nature doi: 10.1038/nature03317 – volume: 1 start-page: 112 year: 2005 end-page: 119 ident: CR4 article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury publication-title: Nat Chem Biol doi: 10.1038/nchembio711 – volume: 11 start-page: 290 year: 2012 end-page: 297 ident: CR15 article-title: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.016 – volume: 50 start-page: 198 year: 2009 end-page: 206 ident: CR28 article-title: Toll-like receptor 3 signaling attenuates liver regeneration publication-title: Hepatology doi: 10.1002/hep.22973 – volume: 150 start-page: 339 year: 2012 end-page: 350 ident: CR33 article-title: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis publication-title: Cell doi: 10.1016/j.cell.2012.06.019 – volume: 27 start-page: 43 year: 2012 end-page: 52 ident: CR6 article-title: Novel Ser/Thr protein phosphatases in cell death regulation publication-title: Physiology (Bethesda) – volume: 108 start-page: 20054 year: 2011 end-page: 20059 ident: CR25 article-title: Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1116302108 – volume: 477 start-page: 335 year: 2011 end-page: 339 ident: CR31 article-title: Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis publication-title: Nature doi: 10.1038/nature10400 – volume: 1757 start-page: 1371 year: 2006 end-page: 1387 ident: CR19 article-title: Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2006.06.014 – volume: 15 start-page: 1533 year: 2008 end-page: 1541 ident: CR21 article-title: The extrinsic cell death pathway and the elan mortel publication-title: Cell Death Differ doi: 10.1038/cdd.2008.41 – volume: 12 start-page: 1143 year: 2011 end-page: 1149 ident: CR7 article-title: Programmed necrosis: backup to and competitor with apoptosis in the immune system publication-title: Nat Immunol doi: 10.1038/ni.2159 – volume: 21 start-page: 368 year: 2011 end-page: 371 ident: CR42 article-title: Multiple death pathways in TNF-treated fibroblasts: RIP3- and RIP1-dependent and independent routes publication-title: Cell Res doi: 10.1038/cr.2011.3 – volume: 133 start-page: 693 year: 2008 end-page: 703 ident: CR43 article-title: TNF-alpha induces two distinct caspase-8 activation pathways publication-title: Cell doi: 10.1016/j.cell.2008.03.036 – volume: 18 start-page: 577 year: 2012 end-page: 586 ident: CR17 article-title: Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock publication-title: Mol Med doi: 10.2119/molmed.2011.00423 – volume: 492 start-page: 199 year: 2012 end-page: 204 ident: CR34 article-title: The NAD-dependent deacetylase SIRT2 is required for programmed necrosis publication-title: Nature doi: 10.1038/nature11700 – volume: 35 start-page: 908 year: 2011 end-page: 918 ident: CR13 article-title: RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome publication-title: Immunity doi: 10.1016/j.immuni.2011.09.020 – volume: 3 start-page: 663 year: 2002 end-page: 672 ident: CR47 article-title: Mixed-lineage kinase control of JNK and p38 MAPK pathways publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm906 – volume: 471 start-page: 368 year: 2011 end-page: 372 ident: CR9 article-title: RIP3 mediates the embryonic lethality of caspase-8-deficient mice publication-title: Nature doi: 10.1038/nature09857 – volume: 24 start-page: 1464 year: 2004 end-page: 1469 ident: CR45 article-title: Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4 publication-title: Mol Cell Biol doi: 10.1128/MCB.24.4.1464-1469.2004 – volume: 109 start-page: 5322 year: 2012 end-page: 5327 ident: CR36 article-title: Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1200012109 – volume: 137 start-page: 1112 year: 2009 end-page: 1123 ident: CR14 article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation publication-title: Cell doi: 10.1016/j.cell.2009.05.037 – volume: 14 start-page: 509 year: 2009 end-page: 521 ident: CR46 article-title: Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection publication-title: Apoptosis doi: 10.1007/s10495-009-0320-3 – volume: 5 start-page: 273 year: 2009 end-page: 276 ident: CR5 article-title: To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage publication-title: Autophagy doi: 10.4161/auto.5.2.7640 – volume: 32 start-page: 37 year: 2007 end-page: 43 ident: CR20 article-title: Cell death by necrosis: towards a molecular definition publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2006.11.001 – volume: 135 start-page: 1311 year: 2008 end-page: 1323 ident: CR12 article-title: Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway publication-title: Cell doi: 10.1016/j.cell.2008.10.044 – volume: 148 start-page: 213 year: 2012 end-page: 227 ident: CR32 article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell doi: 10.1016/j.cell.2011.11.031 – volume: 208 start-page: 633 year: 2011 end-page: 641 ident: CR10 article-title: Mechanisms of necroptosis in T cells publication-title: J Exp Med doi: 10.1084/jem.20110251 – volume: 3 start-page: 200 year: 2013 end-page: 210 ident: CR27 article-title: A role of RIP3-mediated macrophage necrosis in atherosclerosis development publication-title: Cell Rep doi: 10.1016/j.celrep.2012.12.012 – volume: 2 start-page: e115 year: 2011 ident: CR16 article-title: Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington's disease publication-title: Cell Death Dis doi: 10.1038/cddis.2010.94 – volume: 477 start-page: 330 year: 2011 end-page: 334 ident: CR44 article-title: FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation publication-title: Nature doi: 10.1038/nature10273 – volume: 325 start-page: 332 year: 2009 end-page: 336 ident: CR23 article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis publication-title: Science doi: 10.1126/science.1172308 – volume: 325 start-page: 433 year: 2009 ident: CR39 article-title: Knockout rats via embryo microinjection of zinc-finger nucleases publication-title: Science doi: 10.1126/science.1172447 – volume: 107 start-page: 21695 year: 2010 end-page: 21700 ident: CR29 article-title: Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1009179107 – volume: 3 start-page: 811 year: 2012 end-page: 817 ident: CR18 article-title: New components of the necroptotic pathway publication-title: Protein Cell doi: 10.1007/s13238-012-2083-9 – volume: 19 start-page: 107 year: 2012 end-page: 120 ident: CR22 article-title: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 publication-title: Cell Death Differ doi: 10.1038/cdd.2011.96 – volume: 285 start-page: 9535 year: 2010 end-page: 9544 ident: CR30 article-title: Receptor interacting protein 3 suppresses vascular smooth muscle cell growth by inhibition of the phosphoinositide 3-kinase-Akt axis publication-title: J Biol Chem doi: 10.1074/jbc.M109.071332 – volume: 148 start-page: 228 year: 2012 end-page: 243 ident: CR35 article-title: The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways publication-title: Cell doi: 10.1016/j.cell.2011.11.030 – volume: 137 start-page: 1100 year: 2009 end-page: 1111 ident: CR24 article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 7 start-page: e41945 year: 2012 ident: CR26 article-title: Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells publication-title: PLoS One doi: 10.1371/journal.pone.0041945 – volume: 5 start-page: e8870 year: 2010 ident: CR40 article-title: Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases publication-title: PLoS One doi: 10.1371/journal.pone.0008870 – volume: 31 start-page: 1679 year: 2012 end-page: 1691 ident: CR11 article-title: IAPs limit activation of RIP kinases by TNF receptor 1 during development publication-title: EMBO J doi: 10.1038/emboj.2012.18 – volume: 109 start-page: 17382 year: 2012 end-page: 17387 ident: CR37 article-title: Efficient TALEN-mediated gene knockout in livestock publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1211446109 – volume: 19 start-page: 2056 year: 2007 end-page: 2067 ident: CR8 article-title: Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain publication-title: Cell Signal doi: 10.1016/j.cellsig.2007.05.016 – volume: 333 start-page: 1843 year: 2011 end-page: 1846 ident: CR38 article-title: TAL effectors: customizable proteins for DNA targeting publication-title: Science doi: 10.1126/science.1204094 – volume: 434 start-page: 658 year: 2005 end-page: 662 ident: CR3 article-title: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death publication-title: Nature doi: 10.1038/nature03434 – volume: 141 start-page: 2629 year: 1988 end-page: 2634 ident: CR1 article-title: Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis publication-title: J Immunol – volume: 5 start-page: 273 year: 2009 ident: BFcr201391_CR5 publication-title: Autophagy doi: 10.4161/auto.5.2.7640 – volume: 325 start-page: 332 year: 2009 ident: BFcr201391_CR23 publication-title: Science doi: 10.1126/science.1172308 – volume: 150 start-page: 339 year: 2012 ident: BFcr201391_CR33 publication-title: Cell doi: 10.1016/j.cell.2012.06.019 – volume: 471 start-page: 368 year: 2011 ident: BFcr201391_CR9 publication-title: Nature doi: 10.1038/nature09857 – volume: 141 start-page: 2629 year: 1988 ident: BFcr201391_CR1 publication-title: J Immunol doi: 10.4049/jimmunol.141.8.2629 – volume: 434 start-page: 658 year: 2005 ident: BFcr201391_CR3 publication-title: Nature doi: 10.1038/nature03434 – volume: 135 start-page: 1311 year: 2008 ident: BFcr201391_CR12 publication-title: Cell doi: 10.1016/j.cell.2008.10.044 – volume: 35 start-page: 908 year: 2011 ident: BFcr201391_CR13 publication-title: Immunity doi: 10.1016/j.immuni.2011.09.020 – volume: 325 start-page: 433 year: 2009 ident: BFcr201391_CR39 publication-title: Science doi: 10.1126/science.1172447 – volume: 50 start-page: 198 year: 2009 ident: BFcr201391_CR28 publication-title: Hepatology doi: 10.1002/hep.22973 – volume: 133 start-page: 693 year: 2008 ident: BFcr201391_CR43 publication-title: Cell doi: 10.1016/j.cell.2008.03.036 – volume: 14 start-page: 509 year: 2009 ident: BFcr201391_CR46 publication-title: Apoptosis doi: 10.1007/s10495-009-0320-3 – volume: 18 start-page: 577 year: 2012 ident: BFcr201391_CR17 publication-title: Mol Med doi: 10.2119/molmed.2011.00423 – volume: 148 start-page: 228 year: 2012 ident: BFcr201391_CR35 publication-title: Cell doi: 10.1016/j.cell.2011.11.030 – volume: 208 start-page: 633 year: 2011 ident: BFcr201391_CR10 publication-title: J Exp Med doi: 10.1084/jem.20110251 – volume: 15 start-page: 1533 year: 2008 ident: BFcr201391_CR21 publication-title: Cell Death Differ doi: 10.1038/cdd.2008.41 – volume: 109 start-page: 5322 year: 2012 ident: BFcr201391_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1200012109 – volume: 7 start-page: e41945 year: 2012 ident: BFcr201391_CR26 publication-title: PLoS One doi: 10.1371/journal.pone.0041945 – volume: 109 start-page: 17382 year: 2012 ident: BFcr201391_CR37 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1211446109 – volume: 27 start-page: 43 year: 2012 ident: BFcr201391_CR6 publication-title: Physiology (Bethesda) – volume: 11 start-page: 290 year: 2012 ident: BFcr201391_CR15 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.016 – volume: 3 start-page: 200 year: 2013 ident: BFcr201391_CR27 publication-title: Cell Rep doi: 10.1016/j.celrep.2012.12.012 – volume: 477 start-page: 330 year: 2011 ident: BFcr201391_CR44 publication-title: Nature doi: 10.1038/nature10273 – volume: 24 start-page: 1464 year: 2004 ident: BFcr201391_CR45 publication-title: Mol Cell Biol doi: 10.1128/MCB.24.4.1464-1469.2004 – volume: 19 start-page: 107 year: 2012 ident: BFcr201391_CR22 publication-title: Cell Death Differ doi: 10.1038/cdd.2011.96 – volume: 148 start-page: 213 year: 2012 ident: BFcr201391_CR32 publication-title: Cell doi: 10.1016/j.cell.2011.11.031 – volume: 32 start-page: 37 year: 2007 ident: BFcr201391_CR20 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2006.11.001 – volume: 1 start-page: 112 year: 2005 ident: BFcr201391_CR4 publication-title: Nat Chem Biol doi: 10.1038/nchembio711 – volume: 108 start-page: 20054 year: 2011 ident: BFcr201391_CR25 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1116302108 – volume: 333 start-page: 1843 year: 2011 ident: BFcr201391_CR38 publication-title: Science doi: 10.1126/science.1204094 – volume: 1757 start-page: 1371 year: 2006 ident: BFcr201391_CR19 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2006.06.014 – volume: 285 start-page: 9535 year: 2010 ident: BFcr201391_CR30 publication-title: J Biol Chem doi: 10.1074/jbc.M109.071332 – volume: 186 start-page: 451 year: 2010 ident: BFcr201391_CR41 publication-title: Genetics doi: 10.1534/genetics.110.117002 – volume: 137 start-page: 1112 year: 2009 ident: BFcr201391_CR14 publication-title: Cell doi: 10.1016/j.cell.2009.05.037 – volume: 477 start-page: 335 year: 2011 ident: BFcr201391_CR31 publication-title: Nature doi: 10.1038/nature10400 – volume: 12 start-page: 1143 year: 2011 ident: BFcr201391_CR7 publication-title: Nat Immunol doi: 10.1038/ni.2159 – volume: 492 start-page: 199 year: 2012 ident: BFcr201391_CR34 publication-title: Nature doi: 10.1038/nature11700 – volume: 2 start-page: e115 year: 2011 ident: BFcr201391_CR16 publication-title: Cell Death Dis doi: 10.1038/cddis.2010.94 – volume: 21 start-page: 368 year: 2011 ident: BFcr201391_CR42 publication-title: Cell Res doi: 10.1038/cr.2011.3 – volume: 19 start-page: 2056 year: 2007 ident: BFcr201391_CR8 publication-title: Cell Signal doi: 10.1016/j.cellsig.2007.05.016 – volume: 137 start-page: 1100 year: 2009 ident: BFcr201391_CR24 publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 434 start-page: 652 year: 2005 ident: BFcr201391_CR2 publication-title: Nature doi: 10.1038/nature03317 – volume: 5 start-page: e8870 year: 2010 ident: BFcr201391_CR40 publication-title: PLoS One doi: 10.1371/journal.pone.0008870 – volume: 31 start-page: 1679 year: 2012 ident: BFcr201391_CR11 publication-title: EMBO J doi: 10.1038/emboj.2012.18 – volume: 3 start-page: 811 year: 2012 ident: BFcr201391_CR18 publication-title: Protein Cell doi: 10.1007/s13238-012-2083-9 – volume: 107 start-page: 21695 year: 2010 ident: BFcr201391_CR29 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1009179107 – volume: 3 start-page: 663 year: 2002 ident: BFcr201391_CR47 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm906 – reference: 22089220 - Nat Immunol. 2011 Dec;12(12):1143-9 – reference: 16408008 - Nat Chem Biol. 2005 Jul;1(2):112-9 – reference: 22817896 - Cell. 2012 Jul 20;150(2):339-50 – reference: 20042608 - J Biol Chem. 2010 Mar 26;285(13):9535-44 – reference: 21402742 - J Exp Med. 2011 Apr 11;208(4):633-41 – reference: 22421439 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5322-7 – reference: 16950166 - Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1371-87 – reference: 22195746 - Immunity. 2011 Dec 23;35(6):908-18 – reference: 19139632 - Autophagy. 2009 Feb;5(2):273-6 – reference: 21921917 - Nature. 2011 Sep 15;477(7364):335-9 – reference: 21804564 - Nature. 2011 Sep 15;477(7364):330-4 – reference: 12209126 - Nat Rev Mol Cell Biol. 2002 Sep;3(9):663-72 – reference: 20111598 - PLoS One. 2010;5(1):e8870 – reference: 21359116 - Cell Death Dis. 2011;2:e115 – reference: 20628038 - Genetics. 2010 Oct;186(2):451-9 – reference: 17141506 - Trends Biochem Sci. 2007 Jan;32(1):37-43 – reference: 21760595 - Cell Death Differ. 2012 Jan;19(1):107-20 – reference: 21098270 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21695-700 – reference: 22371307 - Mol Med. 2012;18:577-86 – reference: 19199035 - Apoptosis. 2009 Apr;14(4):509-21 – reference: 22123964 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20054-9 – reference: 19524512 - Cell. 2009 Jun 12;137(6):1100-11 – reference: 22860037 - PLoS One. 2012;7(7):e41945 – reference: 22265414 - Cell. 2012 Jan 20;148(1-2):228-43 – reference: 22423968 - Cell Host Microbe. 2012 Mar 15;11(3):290-7 – reference: 23027955 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17382-7 – reference: 22311969 - Physiology (Bethesda). 2012 Feb;27(1):43-52 – reference: 17644308 - Cell Signal. 2007 Oct;19(10):2056-67 – reference: 22327219 - EMBO J. 2012 Apr 4;31(7):1679-91 – reference: 19524513 - Cell. 2009 Jun 12;137(6):1112-23 – reference: 19441101 - Hepatology. 2009 Jul;50(1):198-206 – reference: 14749364 - Mol Cell Biol. 2004 Feb;24(4):1464-9 – reference: 19628861 - Science. 2009 Jul 24;325(5939):433 – reference: 23333278 - Cell Rep. 2013 Jan 31;3(1):200-10 – reference: 19109899 - Cell. 2008 Dec 26;135(7):1311-23 – reference: 22265413 - Cell. 2012 Jan 20;148(1-2):213-27 – reference: 23073834 - Protein Cell. 2012 Nov;3(11):811-7 – reference: 15800626 - Nature. 2005 Mar 31;434(7033):652-8 – reference: 19498109 - Science. 2009 Jul 17;325(5938):332-6 – reference: 21960622 - Science. 2011 Sep 30;333(6051):1843-6 – reference: 18485876 - Cell. 2008 May 16;133(4):693-703 – reference: 3171180 - J Immunol. 1988 Oct 15;141(8):2629-34 – reference: 21368762 - Nature. 2011 Mar 17;471(7338):368-72 – reference: 15800627 - Nature. 2005 Mar 31;434(7033):658-62 – reference: 23201684 - Nature. 2012 Dec 13;492(7428):199-204 – reference: 18794887 - Cell Death Differ. 2008 Oct;15(10):1533-41 – reference: 21200403 - Cell Res. 2011 Feb;21(2):368-71 |
SSID | ssj0025451 |
Score | 2.5660014 |
Snippet | Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor... Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor... |
SourceID | pubmedcentral proquest pubmed crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 994 |
SubjectTerms | 631/45/127/1220 631/80/82/2344 631/80/86 Amino Acid Chloromethyl Ketones - pharmacology Animals Apoptosis Base Sequence Biomedical and Life Sciences Cell Biology Cell Line Interleukin-1beta - metabolism Interleukin-6 - metabolism Life Sciences Lipopolysaccharides - toxicity Macrophages - drug effects Macrophages - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Mitochondria - drug effects Mitochondria - metabolism Mitogen-Activated Protein Kinase Kinases - metabolism Necrosis NF-kappa B - metabolism NF-κB Original original-article Protein Kinases - deficiency Protein Kinases - genetics Protein Kinases - metabolism Receptor-Interacting Protein Serine-Threonine Kinases - deficiency Receptor-Interacting Protein Serine-Threonine Kinases - genetics Receptor-Interacting Protein Serine-Threonine Kinases - metabolism Signal Transduction - drug effects Tumor Necrosis Factor-alpha - pharmacology Tumor Necrosis Factors - metabolism 坏死性 基因敲除 小鼠 巨噬细胞 白细胞介素 肿瘤坏死因子 胚胎成纤维细胞 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMGl4k1KQUb0wiE0Xr9PCCGqClFOVNpbtLEdWHXrbJvsgX_fGedRlkVccvEksTz2eD7P-BtCjiptTSVtnXuDp1VSgx10Ah5WuUJ4xnhAoHj2XZ2ei69zOR8O3NohrXK0iclQ-8bhGfkxA88B2de5_ri-yrFqFEZXhxIad8k9pC5D8KXnt4ALvIMEuFLakMJMnp6elJtjh1ygjH9Abs4HYGjizyvYKrY3px2Pczdx8q_oadqUTh6R_cGbpJ969T8md0J8Qu739SV_PyXfzlYXK3oRweY1m45i5XnqwyW6hMgQQcH5oxizbtcAZvEOFcVkQ9rUNL24jDQGLPHVNe2yfUbOT778-HyaD-UTcie56HLHNa-4KioLO5VQwdtqoaRd1Fp5J0xgNTMueM35zGM8srBVIb2S3jsJuLHgz8lebGJ4SaipmdSFXTBez4QR0nqJl24B_DBnYRFn5GAaw3Ld02SUAomEtNYZeT8OaukG4nGsf7EqUwCcm9Jdl6iM0rKMvJtkx-_8S-pw1E05LLm2vJ0gGXk7NcNiwQjIIoZmk2RAoOAo86JX5fQb8F24FFplRG8peRJAIu7tlrj8lQi5YaABBpuMHI3T4Y9u7fT-4P-9f0UezlLJDUwyPCR73fUmvAbHp6vepNl9A9aV_5Q priority: 102 providerName: ProQuest |
Title | Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis |
URI | http://lib.cqvip.com/qk/85240X/201308/47078777.html https://link.springer.com/article/10.1038/cr.2013.91 https://www.ncbi.nlm.nih.gov/pubmed/23835476 https://www.proquest.com/docview/1416087537 https://www.proquest.com/docview/1417530337 https://pubmed.ncbi.nlm.nih.gov/PMC3731568 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagFRIXxLspZWVELxwW4vX7CKtWFaIVQlTaW7SxHbrq4pQme-DfM-M81GU5cMnF49jy-DGfZ_wNIceltqaUtpp6g7dVUsM-6AR8rHK58IzxgEDx_EKdXYrPC7noaXKaPqyyo7RM2_QQHfbBIXcn4-_xofo-UrZj-N5czUdwBZZAAlcpREhh1E5HRcrNnbpIoHBVxx-_4FjYPoh2rMvdIMm_PKXpADp9TB71liP92PX1CbkX4lPyoMsl-fsZ-XK-vl7T6wj7W71pKWaZpz78RPMP2SAoGHoU_dPNDQBXfC9FMbCQ1hVNFVeRxoDpvNq6WTXPyeXpyff52bRPlTB1kot26rjmJVd5aeFUEip4Wy6VtMtKK--ECaxixgWvOZ959D3mtsylV9J7JwEj5vwF2Yt1DAeEmopJndsl49VMGCGtl_jAFoAOcxYWbEYOxzEsbjpKjEIgaZDWOiPvhkEtXE8yjrku1kVydnNTuNsClVFYlpG3o-zwn39JHQ26Kfrl1QBeYQqp-Dk0-GYshoWB3o5lDPUmyYBAzlHmZafKsRmwU7gUWmVEbyl5FEDS7e2SuLpK5Nsw0AB5TUaOh-lwp1s7vT_8P7FX5OEspdnAwMIjstfebsJrMHbackLu64WekP1PJxdfv03SnJ-kO6k_Dsf9zw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VItReEP9NKWBEOXAITeI4jg8IIaDa0t2eWmlvYWM7sOqSbJusUF-KZ2TG2aQsi7j1kosniTUzHs94xt8A7OdSpblQhW9SOq0SEu2gjvGhEh3EJgy5pUBxdJIMzuIvYzHegF_dXRgqq-xsojPUptJ0Rn4QoudA6Otcvp9f-NQ1irKrXQuNVi2O7dVPDNnqd0efUL6vo-jw8-nHgb_sKuBrwePG11zynCdBrtCAx4k1Kp8kQk0KmRgdpzYswlRbIzmPDKXpApUHwiTCGC0wnAo4fvcW3MaNN6ASQjm-DvDQG3EBnitTSqhyqIVD5emBJuzRkL8lLNAtNGzltwvcmlY3wzUPd71Q869srdsED-_B3aX3yj606nYfNmz5AO60_SyvHsJwNDufsfMSbWy1aBh1umfG_iAXlBApGDqbjHLk9RyDZ7qzxai4kVUFcy9OS1ZaainWVPW0fgRnN8LYx7BZVqXdAZYWoZCBmoS8iOI0FsoIuuSLwVaoFRoND3Z7HmbzFpYjiwm4SErpwZuOqZleAp1Tv41Z5hLuPM30ZUbCyFTowauetvvOv6j2OtlkyyVeZ9cK6cHLfhgXJ2VcJqWtFo4GCQJONE9aUfa_QV-Ji1gmHsgVIfcEBPy9OlJOvzsAcGQ0ht2pB_udOvwxrbXZ7_5_9i9ga3A6GmbDo5Pjp7AduXYfVOC4B5vN5cI-Q6eryZ87TWfw9aaX1m8jYTt2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIigXxJuUAkaUA4ewSRzH8QEhRFm19CEOVNpburEduuqSbLtZof41fh0zzqMsi7j1kosnieV5eMYz_gZgO5cqzYUqfJPSaZWQaAd1jA-V6CA2YcgtBYqHR8nucfxlJEZr8Ku7C0NllZ1NdIbaVJrOyAcheg6Evs7loGjLIr7uDD_Mzn3qIEWZ1q6dRiMi-_byJ4Zv8_d7O8jrN1E0_Pzt067fdhjwteBx7Wsuec6TIFdozOPEGpWPE6HGhUyMjlMbFmGqrZGcR4ZSdoHKA2ESYYwWGFoFHL97A25Kjtsm6pIcXQV76Jm4YM-VLCVURdRAo_J0oAmHNOTvCBd0A41c-f0ct6nljXHF210t2vwrc-s2xOE9uNt6suxjI3r3Yc2WD-BW09vy8iEcHE7PpuysRHtbLWpGXe-ZsT_IHSV0CoaOJ6N8-XyGgTTd32JU6MiqgrkXJyUrLbUXq6v5ZP4Ijq9lYR_DelmV9imwtAiFDNQ45EUUp7FQRtCFXwy8Qq3QgHiw2a9hNmsgOrKYQIyklB687RY10y3oOfXemGYu-c7TTF9kxIxMhR687mm77_yLaqvjTdaq-zy7Ek4PXvXDqKiUfRmXtlo4GiQIONE8aVjZ_wb9Ji5imXggl5jcExAI-PJIOTl1YOC40BiCpx5sd-Lwx7RWZr_5_9m_hNuoVNnB3tH-M7gTuc4fVOu4Bev1xcI-R_-rzl84QWdwct2a9RvlNT-s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mlkl+knockout+mice+demonstrate+the+indispensable+role+of+Mlkl+in+necroptosis&rft.jtitle=Cell+research&rft.au=Wu%2C+Jianfeng&rft.au=Huang%2C+Zhe&rft.au=Ren%2C+Junming&rft.au=Zhang%2C+Zhirong&rft.date=2013-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=23&rft.issue=8&rft.spage=994&rft.epage=1006&rft_id=info:doi/10.1038%2Fcr.2013.91&rft_id=info%3Apmid%2F23835476&rft.externalDocID=PMC3731568 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |