Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activ...
Saved in:
Published in | Cell research Vol. 23; no. 8; pp. 994 - 1006 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. |
---|---|
Bibliography: | Mlkl; necroptosis; apoptosis; TNF; Rip3; mice 31-1568/Q Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell develop- ment. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their abil- ity to activate NF-KB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consis- tently, Mlkl-deficient macrophages and mice exhibited normal interleukin-lp (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These three authors contributed equally to this work. |
ISSN: | 1001-0602 1748-7838 1748-7838 |
DOI: | 10.1038/cr.2013.91 |