Investigation of ductile iron casting process parameters using Taguchi approach and response surface methodology

To find the optimized levels of various casting parameters in the ductile iron casting, various casting defects and the rejection rate were observed from a medium scale foundry. The controlled values of different casting parameters such as pouring temperature, inoculation, carbon equivalent, moistur...

Full description

Saved in:
Bibliographic Details
Published inChina foundry Vol. 13; no. 5; pp. 352 - 360
Main Authors Santhosh, A. Johnson, Lakshmanan, A. R.
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2016
Foundry Journal Agency
Dept of Mechanical Engineering, PPG Institute of Technology, Coimbatore, India%Dept of Mechanical Engineering, PSG College of Technology, Coimbatore, India
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To find the optimized levels of various casting parameters in the ductile iron casting, various casting defects and the rejection rate were observed from a medium scale foundry. The controlled values of different casting parameters such as pouring temperature, inoculation, carbon equivalent, moisture content, green compression strength, permeability and mould hardness were selected. Three different melts of metal with 0.4wt.%, 0.6wt.%, and 0.8wt.% inoculation (Fe-Si-Mg alloy and post inoculant) were produced using a 1-ton capacity coreless medium frequency induction furnace. L-27 orthogonal array with 3-level settings were chosen for the analysis. Responses for each run were observed. The signal-to-noise (S/N) ratio for each run was calculated using the Taguchi approach, and the optimized levels of different casting parameters were identified based on the SIN ratio. The analysis of variance for the casting acceptance percentage concludes that inoculation is the most significant factor affecting the castings' quality with a contribution percentage of 44%; an increase in inoculation results in a significant improvement in acceptance percentage of ductile iron castings. The experiment results showed that with the optimized parameters, the rejection rate was reduced from 16.98% to 6.07%.
Bibliography:21-1498/TG
To find the optimized levels of various casting parameters in the ductile iron casting, various casting defects and the rejection rate were observed from a medium scale foundry. The controlled values of different casting parameters such as pouring temperature, inoculation, carbon equivalent, moisture content, green compression strength, permeability and mould hardness were selected. Three different melts of metal with 0.4wt.%, 0.6wt.%, and 0.8wt.% inoculation (Fe-Si-Mg alloy and post inoculant) were produced using a 1-ton capacity coreless medium frequency induction furnace. L-27 orthogonal array with 3-level settings were chosen for the analysis. Responses for each run were observed. The signal-to-noise (S/N) ratio for each run was calculated using the Taguchi approach, and the optimized levels of different casting parameters were identified based on the SIN ratio. The analysis of variance for the casting acceptance percentage concludes that inoculation is the most significant factor affecting the castings' quality with a contribution percentage of 44%; an increase in inoculation results in a significant improvement in acceptance percentage of ductile iron castings. The experiment results showed that with the optimized parameters, the rejection rate was reduced from 16.98% to 6.07%.
optimized levels; casting parameters; S/N ratio; Taguchi approach; ANOVA; ‘F'-Test
ISSN:1672-6421
2365-9459
1672-6421
DOI:10.1007/s41230-016-5078-y