An Efficacious Transgenic Strategy for Triple Knockout of Xeno-Reactive Antigen Genes GGTA1, CMAH, and B4GALNT2 from Jeju Native Pigs

Pigs are promising donors of biological materials for xenotransplantation; however, cell surface carbohydrate antigens, including galactose-alpha-1,3-galactose (α-Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd blood group antigens, play a significant role in porcine xenograft rejection. Inactivati...

Full description

Saved in:
Bibliographic Details
Published inVaccines (Basel) Vol. 10; no. 9; p. 1503
Main Authors Yoon, Seungwon, Lee, Seulgi, Park, Chungyu, Choi, Hyunyong, Yoo, Minwoo, Lee, Sang Chul, Hyun, Cheol-Ho, Kim, Nameun, Kang, Taeyoung, Son, Eugene, Ghosh, Mrinmoy, Son, Young-Ok, Hur, Chang-Gi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pigs are promising donors of biological materials for xenotransplantation; however, cell surface carbohydrate antigens, including galactose-alpha-1,3-galactose (α-Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd blood group antigens, play a significant role in porcine xenograft rejection. Inactivating swine endogenous genes, including GGTA1, CMAH, and B4GALNT2, decreases the binding ratio of human IgG/IgM in peripheral blood mononuclear cells and erythrocytes and impedes the effectiveness of α-Gal, Neu5Gc, and Sd, thereby successfully preventing hyperacute rejection. Therefore, in this study, an effective transgenic system was developed to target GGTA1, CMAH, and B4GALNT2 using CRISPR-CAS9 and develop triple-knockout pigs. The findings revealed that all three antigens (α-Gal, Neu5Gc, and Sd) were not expressed in the heart, lungs, or liver of the triple-knockout Jeju Native Pigs (JNPs), and poor expression of α-Gal and Neu5G was confirmed in the kidneys. Compared with the kidney, heart, and lung tissues from wild-type JNPs, those from GGTA1/CMAH/ B4GALNT2 knockout-recipient JNPs exhibited reduced human IgM and IgG binding and expression of each immunological rejection component. Hence, reducing the expression of swine xenogeneic antigens identifiable by human immunoglobulins can lessen the immunological rejection against xenotransplantation. The findings support the possibility of employing knockout JNP organs for xenogeneic transplantation to minimize or completely eradicate rejection using multiple gene-editing methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current Address: Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea.
ISSN:2076-393X
2076-393X
DOI:10.3390/vaccines10091503