Deformation Monitoring of a Building Structure Using a Motion Capture System

Conventional 1-D or 2-D displacement sensors are occasionally used to measure the deformation of a structure. However, a motion capture system (MCS) can measure the 3-D movements of markers attached to a target structure with high accuracy and a high sampling rate. Because markers can be easily atta...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 20; no. 5; pp. 2276 - 2284
Main Authors Park, Hyo Seon, Park, Keunhyoung, Kim, Yousok, Choi, Se Woon
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Conventional 1-D or 2-D displacement sensors are occasionally used to measure the deformation of a structure. However, a motion capture system (MCS) can measure the 3-D movements of markers attached to a target structure with high accuracy and a high sampling rate. Because markers can be easily attached to a structure, an MCS is useful for monitoring the dynamic motions of complex structures, such as buildings, using multiple markers. This study proposes a deformation measurement method for building structures using an MCS. The suggested measurement method consists of four stages: 1) setup of the MCS; 2) data acquisition; 3) coordinate transformation into a structural coordinate system; and (4) generation of the deformed shape. The feasibility of the suggested MCS-based measurement method was validated using a free-vibration test of a three-story experimental frame model. The displacement and deformed shape that were measured using an MCS were compared to the displacement and deformed shape measured using a laser displacement sensor, which is a conventional displacement sensor. The comparison results indicated that the MCS can overcome the limits of 1-D displacement sensors and easily and accurately obtain the deformed shape of a structure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2014.2374219