Bias correction and spatial disaggregation of satellite-based data for the detection of rainfall seasonality indices

Like many other African countries, Ghana's rain gauge networks are rapidly deteriorating, making it challenging to obtain real-time rainfall estimates. In recent years, significant progress has been made in the development and availability of real-time satellite precipitation products (SPPs). S...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 7; p. e17604
Main Authors Atiah, Winifred Ayinpogbilla, Johnson, Robert, Muthoni, Francis Kamau, Mengistu, Gizaw Tsidu, Amekudzi, Leonard Kofitse, Kwabena, Osei, Kizito, Fred
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Like many other African countries, Ghana's rain gauge networks are rapidly deteriorating, making it challenging to obtain real-time rainfall estimates. In recent years, significant progress has been made in the development and availability of real-time satellite precipitation products (SPPs). SPPs may complement or substitute gauge data, enabling better real-time forecasting of stream flows, among other things. However, SPPs still have significant biases that must be corrected before the rainfall estimates can be used for any hydrologic application, such as real-time or seasonal forecasting. The daily satellite-based rainfall estimate (CHIRPS-v2) data were bias-corrected using the Bias Correction and Spatial Disaggregation (BSCD) approach. The study further investigated how bias correction of daily satellite-based rainfall estimates affects the identification of seasonality and extreme rainfall indices in Ghana. The results revealed that the seasonal and annual rainfall patterns in the region were better represented after the bias correction of the CHIRPS-v2 data. We observed that, before bias correction, the cessation dates in the country's southwest and upper middle regions were slightly different. However, they matched those of the gauge well after bias correction. The novelty of this study is that, in addition to improving rainfall using CHIRPS data, it also enhances the identification of seasonality indices. The paper suggests the BCSD approach for correcting rainfall estimates from other algorithms using long-term historical records indicative of the rainfall variability area under consideration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e17604