Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859

The rpf genes and colS XOO1207/colR XOO1208 were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, colS XOO3534 (raxH)/colR XOO3535 (raxR) and colS XOO3762/colR XOO3763 were annotated. The colS XOO3534/colR XOO3535 were known to...

Full description

Saved in:
Bibliographic Details
Published inThe plant pathology journal Vol. 30; no. 3; pp. 304 - 309
Main Authors Noh, Young-Hee, Kim, Sun-Young, Han, Jong-Woo, Seo, Young-Su, Cha, Jae-Soon
Format Journal Article
LanguageEnglish
Published Korea (South) 한국식물병리학회 01.09.2014
Korean Society of Plant Pathology
Hanrimwon Publishing Company
Subjects
Online AccessGet full text
ISSN1598-2254
2093-9280
DOI10.5423/PPJ.NT.12.2013.0122

Cover

More Information
Summary:The rpf genes and colS XOO1207/colR XOO1208 were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, colS XOO3534 (raxH)/colR XOO3535 (raxR) and colS XOO3762/colR XOO3763 were annotated. The colS XOO3534/colR XOO3535 were known to control AvrXa21 activity and functions of colS XOO3762/colR XOO3763 were unknown in Xoo. To characterize the relationship between rpf and colS/colR genes, expression of colS/colR genes in Rpf mutants of Xoo were analyzed with quantitative reverse transcription PCR (qRT-PCR). Expressions of all three colS/colR genes increased in the rpfF mutant in which DSF synthesis is defective. Expression of colS XOO1207/colR XOO1208, colS XOO3534/colR XOO3535 and colS XOO3762/colR XOO3763 increased 2, 2-7, 3-13 folds respectively. Expression of colS XOO3534 and colS XOO3762 also increased 2-4 folds in the rpfG mutant in which the signal from DSF is no longer transferred to down-stream. Expression of the other colS/colR genes was not significantly changed in the rpfG mutant compared to the wild type. Since RpfF and RpfG are responsible for DSF synthesis and signal transfer from DSF to down-stream to regulate virulence gene expression, these results suggest that the DSF and DSF-mediated signal regulate negatively three colS/colR genes in Xoo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-000528.2014.30.3.004
http://www.ppjonline.org
ISSN:1598-2254
2093-9280
DOI:10.5423/PPJ.NT.12.2013.0122