PHF1 is required for chromosome alignment and asymmetric division during mouse meiotic oocyte maturation

In recent years, the etiological study of oocyte maturation failure and other mechanisms of early embryonic development has gradually advanced. However, while some achievements have been made in this field, the intrinsic mechanisms underlying disordered oocyte maturation remain unclear. Polycomb gro...

Full description

Saved in:
Bibliographic Details
Published inCell cycle (Georgetown, Tex.) Vol. 17; no. 21-22; pp. 2447 - 2459
Main Authors Qu, Yi, Wang, Yang, Qiao, Jie
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 17.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, the etiological study of oocyte maturation failure and other mechanisms of early embryonic development has gradually advanced. However, while some achievements have been made in this field, the intrinsic mechanisms underlying disordered oocyte maturation remain unclear. Polycomb group proteins (PcG) are a family of proteins that are involved in the epigenetic silencing of genes. Many members of this family are reportedly involved in mammalian oocyte maturation and early embryonic development. PHD finger protein 1 (PHF1) is a core member of the polycomblike group of proteins, although its role in oocyte maturation and early embryonic development are unknown. A previous study by our group using single cell transcriptome analysis and high-throughput technology revealed that PHF1 mRNA was elevated in the human oocyte and the early preimplantation embryo. This suggests that PHF1 may play an important role in oocyte maturation and early embryonic development. In the present study, we aimed to reveal the biological function of PHF1 in mouse oocyte maturation and illuminate its regulatory mechanisms. We report here, for the first time, that PHF1 is necessary for the accurate alignment of chromosomes and oocyte euploidy, as well for the regulation of the asymmetric division of oocytes in mouse. The results of the present study may have the potential to provide a new research direction of human oocyte maturation disorder and early embryonic development block. These results may also provide new diagnosis or treatment strategies for clinical patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1538-4101
1551-4005
DOI:10.1080/15384101.2018.1542896