Utility of Epstein-Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs
To induce RNA interference (RNAi), either small interfering RNAs (siRNAs) are directly introduced into the cell or short hairpin RNAs (shRNAs) are expressed from a DNA vector. At present, shRNAs are commonly synthesized by RNA polymerase III (Pol III) promoters of the H1 and U6 RNAs. In this study,...
Saved in:
Published in | Gene therapy Vol. 15; no. 3; pp. 191 - 202 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2008
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To induce RNA interference (RNAi), either small interfering RNAs (siRNAs) are directly introduced into the cell or short hairpin RNAs (shRNAs) are expressed from a DNA vector. At present, shRNAs are commonly synthesized by RNA polymerase III (Pol III) promoters of the H1 and U6 RNAs. In this study, we designed and characterized a new set of plasmid vectors driven by promoters of the Epstein–Barr virus (EBV)-encoded small RNAs (EBERs). The EBERs are the most abundant transcript in infected cells and they are transcribed by Pol III. We showed that the EBER promoters were able to drive the expression of shRNA fusion transcripts. siRNAs processed from these fusion transcripts specifically and effectively inhibited the expression of homologous reporter or endogenous genes in various types of cells. The partial EBER sequences in the fusion transcripts did not activate double-stranded RNA-dependent protein kinase or suppress RNAi. In nasopharyngeal carcinoma cells, the EBER2 promoter was stronger than the H1 and U6 promoters in shRNA synthesis, leading to more effective knockdown of the target genes. Taken together, our findings suggest that the EBER promoters fundamentally different from those of H1 and U6 can be used to drive the intracellular expression of shRNAs for effective silencing of target genes in mammalian cells and particularly, in EBV-infected cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/sj.gt.3303055 |