HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity

Abstract Objective High density lipoproteins (HDL) protect against ischemia reperfusion injury (IRI). However the precise mechanisms are not clearly understood. The novel intrinsic prosurvival signaling pathway named survivor activating factor enhancement (SAFE) path involves the activation of tumor...

Full description

Saved in:
Bibliographic Details
Published inAtherosclerosis Vol. 228; no. 1; pp. 110 - 116
Main Authors Frias, Miguel A, Pedretti, Sarah, Hacking, Damian, Somers, Sarin, Lacerda, Lydia, Opie, Lionel H, James, Richard W, Lecour, Sandrine
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Objective High density lipoproteins (HDL) protect against ischemia reperfusion injury (IRI). However the precise mechanisms are not clearly understood. The novel intrinsic prosurvival signaling pathway named survivor activating factor enhancement (SAFE) path involves the activation of tumor necrosis factor (TNF) alpha and signal transducer and activator of transcription 3 (STAT3). SAFE plays a crucial role in cardioprotection against IRI. We propose that HDL protect against IRI via activation of the SAFE pathway and modulation of the mitochondrial permeability transition pore (mPTP) opening. Methods and results Isolated mouse hearts were subjected to global ischemia (35 min) followed by reperfusion (45 min). HDL were given during the first 7 min of reperfusion. In control hearts, the post-reperfusion infarct size was 41.3 ± 2.3%. Addition of HDL during reperfusion reduced the infarct size in a dose-dependent manner (HDL 200 μg protein/ml: 25.5 ± 1.6%, p  < 0.001 vs. control). This protective effect was absent in TNF deficient mice (TNF-KO) or cardiomyocyte-STAT3 deficient mice (STAT3-KO). Similarly, HDL, given as a preconditioning stimulus, improved cell survival and inhibited mPTP opening in isolated cardiomyocytes subjected to simulated ischemia. These protective responses were inhibited in cardiomyocytes from TNF-KO and STAT3-KO mice. Conclusion Our data demonstrate that HDL protect against IRI by inhibition of mPTP opening, an effect mediated via activation of the SAFE pathway.
Bibliography:http://dx.doi.org/10.1016/j.atherosclerosis.2013.02.003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9150
1879-1484
DOI:10.1016/j.atherosclerosis.2013.02.003