Target-dependent regulation of acetylcholine secretion at developing motoneurons in Xenopus cell cultures

Myocyte-dependent regulation of acetylcholine (ACh) quantal secretion from developing motoneurons was studied in day-3 Xenopus nerve-muscle co-cultures. Spontaneous synaptic currents (SSCs) were measured in manipulated synapses by using whole-cell voltage-clamped myocytes. Changes in SSC amplitude w...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 517; no. 3; pp. 721 - 730
Main Authors Liou, Jau‐Cheng, Chen, Yu‐Hwa, Fu, Wen‐Mei
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 15.06.1999
Blackwell Science Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Myocyte-dependent regulation of acetylcholine (ACh) quantal secretion from developing motoneurons was studied in day-3 Xenopus nerve-muscle co-cultures. Spontaneous synaptic currents (SSCs) were measured in manipulated synapses by using whole-cell voltage-clamped myocytes. Changes in SSC amplitude were assumed to reflect changes in the ACh content of secreted quantal packets. Compared with natural synapses, motoneurons without any contact with a myocyte (naive neurons) released ACh in smaller quantal packets. Bipolar cultured motoneurons, which were in contact with a myocyte with one axon branch (contact-end) but remained free at another axon branch (free-end), were further used to examine quantal ACh secretion. The ACh quantal size recorded at free-end terminals was similar to that of naive neurons and was smaller than that at the contact-end, indicating that myocyte contact exerts differential regulation on quantal secretion in the same neuron. Some of the neurons that formed a natural synapse with a myocyte continued to grow forward and ACh quantal secretion from the free growth cone was examined. The ACh quantal size recorded at free growth cones was inversely proportional to the distance to the natural synapse, implying localized regulation of quantal secretion by the myocyte. Chronic treatment of day-1 cultures with veratridine and d -tubocurarine, respectively, increased and decreased the neurotrophic action of myocytes when assayed on day 3. Taken together, these findings suggest that the myocyte is an important postsynaptic target in the regulation of quantal secretion and that the trophic action is spatially restricted to the neighbourhood of the neuromuscular junction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3751
1469-7793
DOI:10.1111/j.1469-7793.1999.0721s.x