Adsorptive recovery of arsenic (III) ions from aqueous solutions using dried Chlamydomonas sp

The present study aimed to descry the effectiveness of dried microalga Chlamydomonas sp. for disposing of arsenic from aqueous solution. The study included examining the impact of some factors on algae’s adsorption capacity (optimization study), such as initial concentrations of heavy metal, biosorb...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 8; no. 12; p. e12398
Main Authors Mohamed, Mostafa Sh, Hozayen, Walaa G., Alharbi, Reem Mohammed, Ibraheem, Ibraheem Borie M.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study aimed to descry the effectiveness of dried microalga Chlamydomonas sp. for disposing of arsenic from aqueous solution. The study included examining the impact of some factors on algae’s adsorption capacity (optimization study), such as initial concentrations of heavy metal, biosorbent doses, pH and contact time. All trials have been performed at constant temperature 25 °C and shaking speed of 300 rpm. The optimization studying indicated the pH 4, contact time at 60 min, temperature 25 °C and biomass concentration of 0.6 g/l were the best optimum conditions for the bioremediation activity with maximum removal percentage 95.2% and biosorption capacity 53.8 mg/g. Attesting of biosorption by applying FTIR (Fourier transfigure infrared), XRD (X-ray diffraction), SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray), DLS (Dynamic light scarring) and ZP (Zeta Potential) was conducted. Also, Kinetics, isotherm equilibrium and thermodynamics were carried out to explain the plausible maximum biosorption capacity and biosorption rate of biosorbent q maximum. Microalgae; Chlamydomonas; Bioremediation; Arsenic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2022.e12398