Air pollution impacts from COVID-19 pandemic control strategies in Malaysia
Mitigation measures and control strategies relating to novel coronavirus disease 2019 (COVID-19) have been widely applied in many countries in order to reduce the transmission of this pandemic disease. A Movement Control Order (MCO) was implemented in Malaysia starting from the March 18, 2020 as a p...
Saved in:
Published in | Journal of cleaner production Vol. 291; p. 125992 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mitigation measures and control strategies relating to novel coronavirus disease 2019 (COVID-19) have been widely applied in many countries in order to reduce the transmission of this pandemic disease. A Movement Control Order (MCO) was implemented in Malaysia starting from the March 18, 2020 as a pandemic control strategy which restricted all movement and daily outdoor activities. To investigate the impact of MCO, air pollutants: particulate matter with an aerodynamic diameter less than 10 μm (PM10), particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5), sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and carbon monoxide (CO) in nine major cities in Malaysia were measured before and during the implementation of the MCO. The non-carcinogenic health risk assessments of the air pollutants are also determined using the United States Environmental Protection Agency (USEPA) Health Risk Assessment method. Overall, NO2 recorded an average percentage reduction of 40% with the highest reduction observed at Kota Kinabalu (62%). The largest reductions of PM10, PM2.5, SO2, O3 and CO were recorded at Kota Kinabalu (17%), Kuantan (9.5%), Alor Star (38%), Kota Bharu (15%), and Ipoh (27%) respectively. All cities had hazard quotient (HQ) values of <1 suggesting no non-carcinogenic health effects. The highest HQ was observed for PM2.5 during the MCO period (4.53E-02) in Kuala Lumpur. An average hazard index (HI) value of 1.44E-01 (before the MCO) and 1.40E-01 (during the MCO) showed higher human health risks before the MCO than during the MCO. This study gives confidence to regulatory bodies that the reduction of human activities significantly reduces air pollution and increases human health and so good air pollution control strategies can provide crucial impacts, especially in reducing air pollution and improving human health.
[Display omitted]
•Air pollutants concentration during COVID-19 pandemic control strategies in Malaysia was studied.•Highest reduction of NO2 concentration compared to other air pollutants.•Decline in air pollutants concentration due to movement control order.•Highly urbanized city had highest non-carcinogenic risk. |
---|---|
ISSN: | 0959-6526 1879-1786 |
DOI: | 10.1016/j.jclepro.2021.125992 |