Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells

Activation of the type I insulin-like growth factor receptor (IGF-IR) regulates several aspects of the malignant phenotype, including cancer cell proliferation and metastasis. Phosphorylation of adaptor proteins downstream of IGF-IR may couple IGF action to specific cancer phenotypes. In this study,...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of cancer Vol. 95; no. 9; pp. 1220 - 1228
Main Authors BYRON, S. A, HORWITZ, K. B, RICHER, J. K, LANGE, C. A, ZHANG, X, YEE, D
Format Journal Article
LanguageEnglish
Published Basingstoke Nature Publishing Group 06.11.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Activation of the type I insulin-like growth factor receptor (IGF-IR) regulates several aspects of the malignant phenotype, including cancer cell proliferation and metastasis. Phosphorylation of adaptor proteins downstream of IGF-IR may couple IGF action to specific cancer phenotypes. In this study, we sought to determine if insulin receptor substrate-1 and -2 (IRS-1 and -2) mediate distinct biological effects in breast cancer cells. Insulin receptor substrate-1 and IRS-2 were expressed in T47D-YA breast cancer cells, which lack IRS-1 and -2 expression, yet retain functional IGF-IR. In the absence of IRS-1 and -2 expression, IGF-IR activation was unable to stimulate proliferation or motility in T47D-YA cells. Expression of IRS-1 resulted in IGF-I-stimulated proliferation, but did not affect motility. In contrast, expression of IRS-2 enhanced IGF-I-stimulated motility, but did not stimulate proliferation. The alphaIR-3, an inhibitor of the IGF-IR, was unable to affect these IGF-stimulated phenotypes unless IRS-1 or -2 was expressed. Thus, IGF-IR alone is unable to regulate important breast cancer cell phenotypes. In these cells, IRS proteins are required for and mediate distinct aspects of IGF-IR-stimulated behaviour. As multiple agents targeting the IGF-IR are currently in early clinical trials, IRS expression should be considered as a potential biomarker for IGF-IR responsiveness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-0920
1532-1827
DOI:10.1038/sj.bjc.6603354