Molecular Dynamics Simulation of Helium Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Montmorillonite
In order to investigate the type IV hydrogen storage bottle with better hydrogen storage capacity, the polymer lining of the hydrogen storage bottle was further developed. In this paper, the molecular dynamics method was used to simulate the helium adsorption and diffusion processes within a modifie...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 8; p. 3333 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In order to investigate the type IV hydrogen storage bottle with better hydrogen storage capacity, the polymer lining of the hydrogen storage bottle was further developed. In this paper, the molecular dynamics method was used to simulate the helium adsorption and diffusion processes within a modified montmorillonite (OMMT)-filled polyamide 6 (PA6) system. The effects of the barrier properties of the composites were investigated at different filler contents (3%, 4%, 5%, 6% and 7%), different temperatures (288 K and 328 K) and different pressures (0.1 MPa, 41.6 MPa, 52 MPa and 60 MPa) for certain contents. It was found that when the filler content was 5%, the permeability coefficient of the material was lower than 2 × 10
cm
∙cm/(cm
∙s∙Pa) and the barrier performance was the best. The modified filler with 5% OMMT/PA6 at 328 K still had the strongest barrier performance. When the pressure increased, the permeability coefficient of the modified material first decreased and then increased. In addition to this, the effect of the fractional free volume on the barrier properties of the materials was also investigated. This study provides a basis and reference for the selection and preparation of polymer linings for high-barrier hydrogen storage cylinders. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28083333 |