Accuracy of Demographic Inferences from the Site Frequency Spectrum: The Case of the Yoruba Population

Some methods for demographic inference based on the observed genetic diversity of current populations rely on the use of summary statistics such as the Site Frequency Spectrum (SFS). Demographic models can be either model-constrained with numerous parameters, such as growth rates, timing of demograp...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 206; no. 1; pp. 439 - 449
Main Authors Lapierre, Marguerite, Lambert, Amaury, Achaz, Guillaume
Format Journal Article
LanguageEnglish
Published United States Genetics Society of America 01.05.2017
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Some methods for demographic inference based on the observed genetic diversity of current populations rely on the use of summary statistics such as the Site Frequency Spectrum (SFS). Demographic models can be either model-constrained with numerous parameters, such as growth rates, timing of demographic events, and migration rates, or model-flexible, with an unbounded collection of piecewise constant sizes. It is still debated whether demographic histories can be accurately inferred based on the SFS. Here, we illustrate this theoretical issue on an example of demographic inference for an African population. The SFS of the Yoruba population (data from the 1000 Genomes Project) is fit to a simple model of population growth described with a single parameter ( , founding time). We infer a time to the most recent common ancestor of 1.7 million years (MY) for this population. However, we show that the Yoruba SFS is not informative enough to discriminate between several different models of growth. We also show that for such simple demographies, the fit of one-parameter models outperforms the stairway plot, a recently developed model-flexible method. The use of this method on simulated data suggests that it is biased by the noise intrinsically present in the data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1943-2631
0016-6731
1943-2631
DOI:10.1534/genetics.116.192708