Rapid RAFT Polymerization of Acrylamide with High Conversion

Rapid RAFT polymerization can significantly improve production efficiency of PAM with designed molecular structure. This study shows that ideal Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization of acrylamide is achieved in dimethyl sulfoxide (DMSO) solution at 70 °C. The key to...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 6; p. 2588
Main Authors Liu, Xuejing, Sun, Qiang, Zhang, Yan, Feng, Yujun, Su, Xin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rapid RAFT polymerization can significantly improve production efficiency of PAM with designed molecular structure. This study shows that ideal Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization of acrylamide is achieved in dimethyl sulfoxide (DMSO) solution at 70 °C. The key to success is the appropriate choice of both a suitable RAFT chain transfer agent (CTA) and initiating species. It is illustrated that dodecyl trithiodimethyl propionic acid (DMPA) is a suitable trithiocarbonate RAFT CTA and is synthesized more easily than other CTAs. Compared to other RAFT processes of polymers, the reaction system shortens reaction time, enhances conversion, and bears all the characteristics of a controlled radical polymerization. The calculation result shows that high concentrations can reduce high conversions, accelerate the reaction rate, and widen molecular weight distributions slightly. This work proposes an excellent approach for rapid synthesis of PAMs with a restricted molecular weight distribution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28062588