Enhanced Expression of TGFBI Promotes the Proliferation and Migration of Glioma Cells
Abstract Background/Aims: Transforming growth factor beta-induced protein (TGFBI) is an extracellular matrix protein induced by TGF-β. Previous studies have reported that the abnormal expression of TGFBI is related to the occurrence and development of some types of cancers, while the role of TGFBI i...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 49; no. 3; pp. 1138 - 1150 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2018
Cell Physiol Biochem Press GmbH & Co KG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Background/Aims: Transforming growth factor beta-induced protein (TGFBI) is an extracellular matrix protein induced by TGF-β. Previous studies have reported that the abnormal expression of TGFBI is related to the occurrence and development of some types of cancers, while the role of TGFBI in glioma is uncertain. Methods: The association between TGFBI expression and the prognosis of patients with glioma was analyzed based on data obtained from The Cancer Genome Atlas database. TGFBI expression was analyzed in 3 normal human brains and 57 cases of human gliomas by immunohistochemistry followed by an evaluation of the relationships between TGFBI expression and clinic-pathological features. Furthermore, the RNA interference plasmid pSUPER-shTGFBI was constructed and transfected into U87 and U251 cells to explore the effect of short hairpin RNA against TGFBI (shTGFBI) on cell proliferation, migration, invasion and apoptosis. Western blot analysis was performed to examine the expression of proteins related to apoptosis and proteins in the PI3K/Akt signaling pathway. Results: High TGFBI expression was found to be associated with poor prognosis in patients with glioblastoma multiforme. Immunohistochemistry showed that TGFBI expression was significantly higher in glioma tissue than in normal human brain tissues. The expression level of TGFBI showed no significant correlation with age, sex, lymph-node metastasis, or pathological grade. sh-TGFBI could inhibit proliferation, invasion and migration and induce apoptosis in U87 and U251 cells in vitro. Furthermore, the phosphorylation levels of AKT and mTOR declined significantly in sh-TGFBI transfected U81 and U251 cells when compared with control. Conclusion: TGFBI was up-regulated in glioma cells and played a promoting role in the growth and motility of U87 and U251 cells. These results suggested that TGFBI has the potential to be a diagnostic marker and to serve as a target for the treatment of gliomas. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.1159/000493293 |