Photoelectrochemical performance of N-doped ZnO branched nanowire photoanodes
A ZnO branched-nanowire (BNW) photoanode was doped with N for use in a photoelectrochemical cell (PEC) to generate H2 from water splitting. First, ZnO BNWs were synthesized by chemical bath deposition method. Two experimental methods were used for N-doping: the time-controlled direct-current glow di...
Saved in:
Published in | Heliyon Vol. 3; no. 10; p. e00423 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A ZnO branched-nanowire (BNW) photoanode was doped with N for use in a photoelectrochemical cell (PEC) to generate H2 from water splitting. First, ZnO BNWs were synthesized by chemical bath deposition method. Two experimental methods were used for N-doping: the time-controlled direct-current glow discharge plasma (DCGDP) and the DC magnetron plasma (DCMP) methods, to optimize N-doping of the NW structure. X-ray photoelectron spectroscopy (XPS) provided the N distribution and atomic percentage in the BNWs. The XPS results confirmed that N distribution into ZnO BNWs occurred by N substitution of O sites in the ZnO structure and through well-screened molecular N2. The morphologies and structures of the fabricated nanostructures were investigated by field-emission scanning electron microscopy and X-ray diffraction respectively. The photoanode performance was demonstrated in photoelectrochemical studies at various power densities under both dark and illuminated conditions. Increasing the N amount in the ZnO BNWs increased the photocurrent in the PEC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2017.e00423 |