Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats

To define the role of environmental oxygen in regulating postnatal maturation of the carotid body afferent pathway, light and electron microscopic methods were used to compare chemoafferent neurone survival and carotid body development in newborn rats reared from birth in normoxia (21 % O 2 ) or chr...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 509; no. 2; pp. 519 - 526
Main Authors Jeffery T Erickson, Catherine Mayer, Andrew Jawa, Liming Ling, E Burt Olson, Jr, Edward H Vidruk, Gordon S Mitchell, David M Katz
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 01.06.1998
Blackwell Science Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To define the role of environmental oxygen in regulating postnatal maturation of the carotid body afferent pathway, light and electron microscopic methods were used to compare chemoafferent neurone survival and carotid body development in newborn rats reared from birth in normoxia (21 % O 2 ) or chronic hyperoxia (60 % O 2 ). Four weeks of chronic hyperoxia resulted in a significant 41 % decrease in the number of unmyelinated axons in the carotid sinus nerve, compared with age-matched normoxic controls. In contrast, the number of myelinated axons was unaffected by hyperoxic exposure. Chemoafferent neurones, located in the glossopharyngeal petrosal ganglion, already exhibited degenerative changes following 1 week of hyperoxia from birth, indicating that even a relatively short hyperoxic exposure was sufficient to derange normal chemoafferent development. In contrast, no such changes were observed in the vagal nodose ganglion, demonstrating that the effect of high oxygen levels was specific to sensory neurones in the carotid body afferent pathway. Moreover, petrosal ganglion neurones were sensitive to hyperoxic exposure only during the early postnatal period. Chemoafferent degeneration in chronically hyperoxic animals was accompanied by marked hypoplasia of the carotid body. In view of previous findings from our laboratory that chemoafferent neurones require trophic support from the carotid body for survival after birth, we propose that chemoafferent degeneration following chronic hyperoxia is due specifically to the loss of target tissue in the carotid body.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3751
1469-7793
DOI:10.1111/j.1469-7793.1998.519bn.x