High red blood cell distribution width is closely associated with in-stent restenosis in patients with unstable angina pectoris

In-stent restenosis remains an unresolved issue. Inflammation plays a pivotal role in the process of in-stent restenosis. Significant and positive associations were found between red blood cell distribution width (RDW) and inflammation. But whether there is a close relationship between higher RDW an...

Full description

Saved in:
Bibliographic Details
Published inBMC cardiovascular disorders Vol. 19; no. 1; p. 175
Main Authors Geng, Ning, Su, Guangsheng, Wang, Shaojun, Zou, Deling, Pang, Wenyue, Sun, Yingxian
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.07.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In-stent restenosis remains an unresolved issue. Inflammation plays a pivotal role in the process of in-stent restenosis. Significant and positive associations were found between red blood cell distribution width (RDW) and inflammation. But whether there is a close relationship between higher RDW and in-stent restenosis is still not clarified. This retrospective observational study investigated 214 consecutive patients with unstable angina pectoris who underwent successful percutaneous coronary interventions with drug-eluting stents. Patients were divided into three groups according to baseline RDW before percutaneous coronary interventions (low RDW group:≤12.5%; intermediate RDW group:> 12.5% and ≤ 13.5%; high RDW group:> 13.5%). The follow-up angiographies were routinely performed 9-12 months after the initial percutaneous coronary interventions. The multivariate logistic regression analysis was employed to determine the independent predictors of in-stent restenosis. The in-stent restenosis rate was significantly higher in group with higher baseline RDW value (12.3, 19.7, 47.7% in low, intermediate, and high RDW groups respectively, P < 0.001). The baseline RDWs were significantly higher in patients with in-stent restenosis compared with those in patients without in-stent restenosis (13.7 ± 0.8% vs. 13.0 ± 0.8%, P < 0.001). For prediction of in-stent restenosis, the ROC (receiver operating characteristic) curve analysis demonstrated the optimal RDW cutoff value was 13.37 (sensitivity: 65.5%, specificity: 73.6%); the diagnosis cutoff value was 13.89 (sensitivity: 40.0%, specificity: 91.8%); the screening cutoff value was 12.99 (sensitivity: 83.6%, specificity: 49.1%). By multivariate logistic analysis, higher baseline RDW (odds ratio [OR], 5.179; 95% confidence interval [CI], 2.568 to 10.446; P<0.001) together with lower baseline indirect bilirubin (OR, 0.413; 95% CI, 0.305 to 0.559; P<0.001) and diabetes (OR, 4.077; 95% CI, 1.654 to 10.054; P = 0.002) were closely associated with in-stent restenosis at followup (11.1 ± 5.8 months). The baseline RDW was closely associated with in-stent restenosis at follow-up. The patients with higher baseline RDW might have more chances to develop in-stent restenosis at followup.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1471-2261
1471-2261
DOI:10.1186/s12872-019-1159-3