Dynamic Interfacial Tensions of Surfactant and Polymer Solutions Related to High-Temperature and High-Salinity Reservoir
Betaine is a new surfactant with good application prospects in high-temperature and high-salinity reservoirs. The interfacial properties of two kinds of betaine mixtures with a good synergistic effect were evaluated in this paper. On this basis, the effects of temperature-resistant, salt-resistant p...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 3; p. 1279 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Betaine is a new surfactant with good application prospects in high-temperature and high-salinity reservoirs. The interfacial properties of two kinds of betaine mixtures with a good synergistic effect were evaluated in this paper. On this basis, the effects of temperature-resistant, salt-resistant polymers with different contents of 2-acrylamide-2-methylpropanesulfonic acid (AMPS) on dynamic interfacial tensions (IFTs) against n-alkanes and crude oil were studied. The experimental results show that the IFTs between betaine ASB and n-alkanes can be reduced to ultra-low values by compounding with anionic surfactant petroleum sulfonate (PS) and extended anionic surfactant alkoxyethylene carboxylate (AEC), respectively. ASB@AEC is very oil-soluble with nmin value ≥14, and ASB@PS is relatively water-soluble with nmin value of 10. The water solubility of both ASB@PS and ASB@AEC is enhanced by the addition of water-soluble polymers. The HLB of the ASB@AEC solution becomes better against crude oil after the addition of polymers, and the IFT decreases to an ultra-low value as a result. On the contrary, the antagonistic effect in reducing the IFT can be observed for ASB@PS in the same case. In a word, polymers affect the IFTs of surfactant solutions by regulating the HLB. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28031279 |