Pericytes in diabetes-associated vascular disease

Abstract Pericytes are mural cells that support and stabilise the microvasculature, and are present in all vascular beds. Pericyte-endothelial cell crosstalk is essential in both remodelling and quiescent vasculature, and this complex interaction is often disrupted in disease states. Pericyte loss i...

Full description

Saved in:
Bibliographic Details
Published inJournal of diabetes and its complications Vol. 30; no. 8; pp. 1643 - 1650
Main Authors Warmke, Nele, Griffin, Kathryn J, Cubbon, Richard M
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2016
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Pericytes are mural cells that support and stabilise the microvasculature, and are present in all vascular beds. Pericyte-endothelial cell crosstalk is essential in both remodelling and quiescent vasculature, and this complex interaction is often disrupted in disease states. Pericyte loss is believed to be an early hallmark of diabetes-associated microvascular disease, including retinopathy and nephropathy. Here we review the current literature defining pericyte biology in the context of diabetes-associated vascular disease, with a particular focus on whether pericytes contribute actively to disease progression. We also speculate regarding the role of pericytes in the recovery from macrovascular complications, such as critical limb ischaemia. It becomes clear that dysfunctional pericytes are likely to actively induce disease progression by causing vasoconstriction and basement membrane thickening, resulting in tissue ischaemia. Moreover, their altered interactions with endothelial cells are likely to cause abnormal and inadequate neovascularisation in diverse vascular beds. Further research is needed to identify mechanisms by which pericyte function is altered by diabetes, with a view to developing therapeutic approaches that normalise vascular function and remodelling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
ISSN:1056-8727
1873-460X
DOI:10.1016/j.jdiacomp.2016.08.005