Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4

Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collap...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 199; no. 4; pp. 1047 - 1063
Main Authors Luciano, Pierre, Dehé, Pierre-Marie, Audebert, Stéphane, Géli, Vincent, Corda, Yves
Format Journal Article
LanguageEnglish
Published United States Genetics Society of America 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1943-2631
0016-6731
1943-2631
DOI:10.1534/genetics.114.173856