Effects of Different Operating Temperatures on the Tensile Properties of the Grid Plate Hardfaced with Colmonoy in a Pool Type Sodium Fast Reactor
In sodium-cooled fast reactors (SFRs), the grid plate is a critical component which is made of 316 L(N) SS. It is supported on a core support structure which is also made of 316 L(N) SS. This assembly is immersed in a pool of sodium which acts as a coolant. If there is a direct contact between the g...
Saved in:
Published in | Science and Technology of Nuclear Installations Vol. 2017; no. 2017; pp. 1 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2017
Hindawi John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In sodium-cooled fast reactors (SFRs), the grid plate is a critical component which is made of 316 L(N) SS. It is supported on a core support structure which is also made of 316 L(N) SS. This assembly is immersed in a pool of sodium which acts as a coolant. If there is a direct contact between the grid plate and the flange of core support structure, self-welding takes place between them at the high operating temperature of SFR by a thin sheet of liquid sodium which gets into the gap between them as this sodium acts as a metallic gum. To avoid self-welding, the bottom plate of the grid plate is hardfaced with Colmonoy 5 by PTAW so that the direct contact between those two components is avoided. Due to the difference in coefficients of thermal expansion between the base metal and the coating, the interface is subjected to tensile force which may weaken the bonding strength between them at higher temperatures. Therefore, the weldment should be able to withstand the tensile force at higher operating temperatures for which hot tensile properties of the base metal and the weldment have been determined to study the compatibility between them after hardfacing for the reliable operation of SFR. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1687-6075 1687-6083 |
DOI: | 10.1155/2017/5926105 |