Pilot Study of Endovascular Delivery of Mesenchymal Stromal Cells in the Aortic Wall in a Pig Model

Abdominal aortic aneurysms (AAAs) have a high mortality. In small-animal models, multipotent mesenchymal stromal cells (MSCs) have shown benefits in attenuating aneurysm formation. However, an optimal cell delivery strategy is lacking. The NOGA system, which targets cell injections in a less-invasiv...

Full description

Saved in:
Bibliographic Details
Published inCell transplantation Vol. 30; p. 9636897211010652
Main Authors Li, Ke, Vela, Deborah, Migliati, Elton, da Graca Cabreira, Maria, Wang, Xiaohong, Buja, L Maximilian, Perin, Emerson C.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 2021
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abdominal aortic aneurysms (AAAs) have a high mortality. In small-animal models, multipotent mesenchymal stromal cells (MSCs) have shown benefits in attenuating aneurysm formation. However, an optimal cell delivery strategy is lacking. The NOGA system, which targets cell injections in a less-invasive way, has been used for myocardial cell delivery. Here, we assessed the safety and feasibility of the NOGA system for endovascular delivery of MSCs to the aortic wall in an AAA pig model. We induced AAA in 9 pigs by surgery or catheter induction. MSCs were delivered using the NOGA system 6 or 8 weeks after aneurysm induction. We euthanized the pigs and harvested the aorta for histologic analysis 1, 3, and 7 days after cell delivery. During AAA creation, 1 pig died; 8 pigs completed the study without acute adverse events or complications. The cell delivery procedure was safe and feasible. We successfully injected MSCs directly into the aortic wall in a targeted manner. Histologic and immunohistochemical analyses confirmed transmural injections in the aortic wall area of interest and the presence of MSCs. Our study showed the safety and feasibility of endovascular cell delivery to the aortic wall in a pig model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0963-6897
1555-3892
DOI:10.1177/09636897211010652