Information Content Weighting for Perceptual Image Quality Assessment

Many state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage structure: local quality/distortion measurement followed by pooling. While significant progress has been made in measuring local image quality/distortion, the pooling stage is often done in ad-hoc way...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 20; no. 5; pp. 1185 - 1198
Main Authors Wang, Zhou, Li, Qiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage structure: local quality/distortion measurement followed by pooling. While significant progress has been made in measuring local image quality/distortion, the pooling stage is often done in ad-hoc ways, lacking theoretical principles and reliable computational models. This paper aims to test the hypothesis that when viewing natural images, the optimal perceptual weights for pooling should be proportional to local information content, which can be estimated in units of bit using advanced statistical models of natural images. Our extensive studies based upon six publicly-available subject-rated image databases concluded with three useful findings. First, information content weighting leads to consistent improvement in the performance of IQA algorithms. Second, surprisingly, with information content weighting, even the widely criticized peak signal-to-noise-ratio can be converted to a competitive perceptual quality measure when compared with state-of-the-art algorithms. Third, the best overall performance is achieved by combining information content weighting with multiscale structural similarity measures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2010.2092435