Involvement of RAGE, NADPH Oxidase, and Ras/Raf-1 Pathway in Glycated LDL-Induced Expression of Heat Shock Factor-1 and Plasminogen Activator Inhibitor-1 in Vascular Endothelial Cells

Atherothrombotic cardiovascular diseases are the predominant causes of mortality of diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor for fibrinolysis, and it is also implicated in inflammation and tissue remodeling. Increased levels of PAI-1 and glyca...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 151; no. 9; pp. 4455 - 4466
Main Authors Sangle, Ganesh V, Zhao, Ruozhi, Mizuno, Tooru M, Shen, Garry X
Format Journal Article
LanguageEnglish
Published Chevy Chase, MD Endocrine Society 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atherothrombotic cardiovascular diseases are the predominant causes of mortality of diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor for fibrinolysis, and it is also implicated in inflammation and tissue remodeling. Increased levels of PAI-1 and glycated low-density lipoprotein (glyLDL) were detected in patients with diabetes. Previous studies in our laboratory demonstrated that heat shock factor-1 (HSF1) is involved in glyLDL-induced PAI-1 overproduction in vascular endothelial cells (EC). The present study investigated transmembrane signaling mechanisms involved in glyLDL-induced HSF1 and PAI-1 up-regulation in cultured human vascular EC and streptozotocin-induced diabetic mice. Receptor for advanced glycation end products (RAGE) antibody prevented glyLDL-induced increase in the abundance of PAI-1 in EC. GlyLDL significantly increased the translocation of V-Ha-Ras Harvey rat sarcoma viral oncogene homologue (H-Ras) from cytoplasm to membrane compared with LDL. Farnesyltransferase inhibitor-277 or small interference RNA against H-Ras inhibited glyLDL-induced increases in HSF1 and PAI-1 in EC. Treatment with diphenyleneiodonium, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, blocked glyLDL-induced translocation of H-Ras, elevated abundances of HSF1 and PAI-1 in EC, and increased release of hydrogen peroxide from EC. Small interference RNA for p22phox prevented glyLDL-induced expression of NOX2, HSF1, and PAI-1 in EC. GlyLDL significantly increased V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) phosphorylation. Treatment with Raf-1 inhibitor blocked glyLDL-induced increase of PAI-1 mRNA in EC. The levels of RAGE, H-Ras, NOX4, HSF1, and PAI-1 were increased in hearts of streptozotocin-diabetic mice and positively correlated with plasma glucose. The results suggest that RAGE, NOX, and H-Ras/Raf-1 are implicated in the up-regulation of HSF1 or PAI-1 in vascular EC under diabetes-associated metabolic stress. Glycated LDL stimulates the expression of plasminogen activator inhibitor-1 in vascular endothelial cells through the activation of receptor of AGEs, H-Ras, Raf1, and NADPH oxidase.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2010-0323