Visualizing Bioabsorbable Spacer Effectiveness by Confirming the Distal-Tail of Carbon-Ion Beams: First-In-Human Report

In particle therapy, bioabsorbable polyglycolic acid (PGA) spacer was developed to reduce the healthy organ irradiation dose, especially in the gastrointestinal tract. The PGA spacer is safe and effective; however, there are no reports that have confirmed whether the PGA spacer which inserted in the...

Full description

Saved in:
Bibliographic Details
Published inTomography (Ann Arbor) Vol. 8; no. 5; pp. 2339 - 2346
Main Authors Shiba, Shintaro, Okamoto, Masahiko, Sakai, Makoto, Ohno, Tatsuya
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In particle therapy, bioabsorbable polyglycolic acid (PGA) spacer was developed to reduce the healthy organ irradiation dose, especially in the gastrointestinal tract. The PGA spacer is safe and effective; however, there are no reports that have confirmed whether the PGA spacer which inserted in the body actually stops the carbon-ion (C-ion) beams. Here, we visualized and confirmed that the PGA spacer stops the C-ion beams in the body based on the dose distribution using auto-activation positron emission tomography (AAPET). A 59-year-old dedifferentiated retroperitoneal liposarcoma patient underwent C-ion radiotherapy (C-ion RT) on referral. A month before C-ion RT initiation, the patient underwent PGA spacer placement. Postoperatively, the patient received 4.4 Gy (RBE) per fraction of C-ion RT, followed by AAPET. AAPET revealed lower positron emitter concentrations at the distal tissue ventral to the PGA spacer than in the planning target volume. In observing the efficacy of the PGA spacer, the AAPET images and the average count per second of the positron emitter suggested that the PGA spacer stopped the C-ion beams in the body in accordance with the dose distribution. Therefore, AAPET was useful in confirming the PGA spacer's effectiveness in this study, and the PGA spacer stopped the C-ion beams.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-139X
2379-1381
2379-139X
DOI:10.3390/tomography8050195